
EPFL, DISTRIBUTED INTELLIGENT SYSTEMS AND ALGORITHMS LABORATORY, ENG-466 DISTRIBUTED INTELIGENT SYSTEMS, DECEMBER 2015 1

Optimized simulated flocking algorithm for e-pucks
Diego Antognini · Damien Doy · Martin d’Hoffschmidt

Abstract—In this report, the flocking of a swarm of mobile
robots is studied. Two flocking strategies are investigated and
compared. The platform of test used to perform the experiments
is Webots. Three flocking metrics will also be presented which are
useful to evaluate the performance of the flock. Finally, Particle
Swarm Optimization is used to tune the parameters of both
flocking control strategies in order to achieve the highest possible
performance.

Index Terms—Swarm, Flocking, Reynolds, Particle Swarm
Optimization.

I. INTRODUCTION

The flocking of individuals in nature can easily be observed.
Collective interaction of individuals through flocking can pro-
vide them various advantages. For instance, flock of birds are
formed for migration such as to improve the energy efficiency.
This report aims at investigating how to reproduce a flocking
behaviour between e-pucks. Two different flocking rules are
implemented and tested on the Webots platform.

The first implemented flocking strategy is a Reynold-based
rules strategy. The first rule promotes the cohesion or aggre-
gation of the flock. The second rules aims at preventing the
flock mates of being too close from one another and is called
the dispersion rule. The third rule is called the consistency
rule and encourages the flock mate to move fast. In addition
to that, the individuals of the flock should also be able to
avoid obstacles. To achieve this, a Braitenberg controller is
implemented for each individual.

The second flocking strategy is based on the work of [1].
We will refer to it below as the Kikker controller. It will
be assumed there that each individual is equipped with a
range and bearing. The idea of the strategy is to control
each individual of the flock based on personal and shared
information with its neighbours. A desired heading vector is
computed such that each individual knows the direction it
should follow in order to achieve a coherent flocking. Like the
first controller, the desired heading vector is made of different
rules similar to cohesion and separation rules.

Third, it has also been investigated how to deal with the fact
the each individual of the flock can only communicate with a
limited number of flock mates. This problem arises with flocks
that have a high number of individuals. The idea here is that
each flock mate communicates its local info but also the info
of its neighbours that other neighbours would not be able to
receive directly.

Finally, three flocking metrics were introduced to evaluate
the performance of the two flocking strategies. Indeed, the two
flocking strategies introduce several parameters that can highly
influence the performance of the flock and need therefore
to be tuned. To do so, Particle Swarm Optimization will be
performed on them such as to find the couple of parameters
that maximizes the metrics.

II. EXPERIMENTS

In order to test the flocking behaviour of our controllers, we
use two worlds in Webots. The first one is a world containing
a variety of static obstacles with different configurations. This
allows us to test the obstacle avoidance strategy in different
situations as well as the flocking behaviour. The flock is
composed of five robots and each flock member has the same
migration urge point. It has been chosen in a way to force the
flock to go through the obstacles.

The purpose of the second world is to observe how our
controllers act in presence of another flock. In this world there
is no obstacles because we consider the other flock to be the
obstacles. So, in this situation the obstacles won’t be static any
more but they will be moving. Each flocks of five members
start at each side of the arena and their migration urge point
is defined behind the other flock. In this manner, we force the
two flocks to cross themselves.

In order to evaluate the efficiency of our controllers, we
measure the performance with some defined metrics that will
be discussed below. This will allow us to choose the parame-
ters accordingly. Finally, in order to find the best parameters,
we will use the Particle Swarm Optimization algorithm with
noise-resistance using our metrics as fitness.

III. FLOCKING BEHAVIOUR, REYNOLDS UNLIMITED

The first controller is a simple and established flocking
algorithm based on Reynolds flocking rules. It works by
having an entity that knows the position of all the robots in a
world and compute, for each robot, a direction vector. Flocking
is achieved by each robot following its direction vector. The
direction is computed such that the robots want to get together.
At the same time, they should also not collide. This direction
vector is the sum of multiples sub vectors that ensure the flock
behaviour:
• Cohesion: move toward the centre of mass of the flock
• Dispersion: move away from other robots
• Consistency: move at the same speed as the flock
• Migration: move toward an arbitrary point
These different parameters show also one of the major

drawback of the Reynolds algorithm: there must be an entity
who knows the position and direction of every robots in order
to calculate each of desired components. Usually this is the
role of a supervisor to receive the position of each robots,
calculate each of the component for each robot and send back
the direction and speed to each robot.

The inital Reynolds variant we worked with was the Unlim-
ited Range Reynolds where there is no supervisor. Instead,
each robot broadcasts its id, and the robots who get the
message will be able to calculate the relative position of
the sender using its hardware receiver. Each robot keeps in

EPFL, DISTRIBUTED INTELLIGENT SYSTEMS AND ALGORITHMS LABORATORY, ENG-466 DISTRIBUTED INTELIGENT SYSTEMS, DECEMBER 2015 2

memory a matrix containing the position and speed of the other
robots which will be used to calculate the personal direction
toward the center of mass and dispersion.

This algorithm is taken from the Laboratory 04 - part 02 of
the course. The Unlimited Reynolds controller has a perfor-
mance equal to the Reynolds with a supervisor, at the cost of
more communication between robots, more computation for
each robots, since the center of mass is calculated multiple
times, which makes the Unlimited Reynolds algorithm less
scalable than the centralized one. We tested this controller
through the obstacles.wbt world and the flock was able to
navigate through the obstacles without apparent problem. We
used the results of the performance of the flock with this
algorithm as a baseline for other experiments.

IV. FLOCKING BEHAVIOUR, REYNOLDS LIMITED

The unlimited range Reynolds algorithm is good at creating
a robust flocking behaviour but it suffers from a major draw-
back. The unlimited range for communication is unrealistic at
many different levels.

An infinite or great range means that the communication
module on a real e-puck will drain a lot of energy from the
battery. Assuming infinite battery capacity, the communication
can not be perfect between robots in a flock across obstacles.
Sometimes robots will be out of sight from the flock for a short
moment. Unlimited communication is not scalable and as the
number of robots increases, so does the number of messages
received for each robot. Resulting in a accordingly increasing
cost to handle them. Also, the communication medium (air)
will get polluted and a lot of noise will be observed.

To solve this problem, it is in fact possible to represent
the flock as a connected graph. Where robots are the vertices
and where the edges represent the communication between
robots. The unlimited communication can be represented as a
complete graph and the limited communication as a loosely
connected graph. This graph representation explain why an
unlimited range communication is not viable in a flock: the
number of edges in a complete graph is N(N−1)

2 , where N is
the number of vertices. To allow for a scalable and reactive
flock, we have to reduce this number of edges and this is
where a limited range communication model will allow us
to optimize the scalability of the classical Reynolds flock
algorithm.

This graph representation of the communication between
robots is analogous to a switched network like the internet.
Our flock, like a switched network, want to know a global
state of the system without being connected to all elements in
order to find the centre of mass of the flock. Since this problem
is an important one in the switched network for routing, a lot
of optimized algorithms exists and we can use one of them
from this area for our purpose.

The algorithm that has been chosen is the Bellman Ford,
which is a routing algorithm used in networks to know the
lowest latency route. The huge advantage of this algorithm is
that it uses local information and communication to create a
general state. A node only has to know about its neighbours
and exchange information with them to understand the global
state of the system.

The fact that Bellman-ford is used in huge networks like
Internet means that it is resistant to node failures. In our flock
a failure can be represented by a robot getting out of sight
(because of an obstacle) from the flock. Our algorithm being
resistant is important to avoid having the flock wait for a
robot that would be lost forever. Another huge advantage of an
algorithm such as Bellman-Ford is that it is scalable. Indeed
the algorithmic complexity of the Bellman-Ford algorithm is
O(|E| · |V |), that means that the algorithm should be scalable
as long as we limit the number of edge in the graph, this can
be done by a really short range.

A. Algorithm

Algorithm 1 Limited distance communication
1: timestamps[myid]← currenttimestamp+ 1
2: broadcast(position(0, 0), timestamps[myid])
3: if messagereceived then
4: if timestamps[idsender] < packet(timestamp)

then
5: timestamps[idsender]← packet(timestamp)
6: position[idsender] ← packet(position) +
positionemitterpacket

7: broadcast(position[idsender], timestamps[idsender])
8: end if
9: end if

Each robot sends a ping with its information (timestamp)
to other robots, they also send their current position which
is equals to (0, 0). These robots will have matrices to store
the position of other robots and their timestamp. Every time
a robot receives a packet, it will forward it by broadcasting it
(in the limits of its range). To avoid that a robot broadcasts an
outdated information or just rebroadcasts a packet it has just
send, we store the timestamp and increment it every time a
robot sends an information. The timestamp also allows a flock
to “forget” a robot that has wander out of the flock or is stuck.
This can be done by not taking robots with an old timestamp
in the calculation of the centre of mass.

The emitters range of each robots has been set to 10 cm.
It means that e-pucks have to be really close to each other
in order to communicate. The problem with this approach is
that e-pucks have to start near one another. It will be seen in
the results section that limited range algorithm actually has a
similar performance to the unlimited range one.

V. FLOCKING BEHAVIOUR, ANOTHER APPROACH : KIKKER

The flocking behaviour described in this section is based
on the work of Ali et al. [1]. Some modifications have been
brought however in order to adapt the controller the our case
of simulation. We decided to call this new controller Kikker.

A. Flocking behaviour

The flocking behaviour is obtained through decisions taken
based on the knowledge of the neighbours for each individual
of the flock. This decision might either be global or local. It

EPFL, DISTRIBUTED INTELLIGENT SYSTEMS AND ALGORITHMS LABORATORY, ENG-466 DISTRIBUTED INTELIGENT SYSTEMS, DECEMBER 2015 3

is given in the form of a desired direction a computed locally
by each individual as the weighted sum of heading alignment
vector h, the proximal control vector b, the cohesion vector
c and the migration urge d.

a =
h + βb + γc + δd

‖h + βb + γc + δd‖
(1)

The desired direction vector a represents then the direction
the e-puck should follow in its reference frame. This last is
defined according to a real and complex axis which we will
respectively refer to as the x and y axis. The x axis, or the real
axis, corresponds to the forward heading of the e-puck. The y
axis, or the imaginary axis, corresponds to the left wheel axle.
We will refer below to this frame as the body-fixed reference.

B. Heading alignment

All the individuals of the flock have to adapt their heading
direction according to their neighbours. Therefore, the head-
ing alignment vector quantifies averaged heading for all the
neighbours of one individual.

h =

∑
k∈Nr

exp(jθk)

‖
∑

k∈Nr
exp(jθk)‖

(2)

The angle θ is the heading angle of a neighbour in the
body-fixed reference frame of the current robot. The set of
considered neighbours is expressed as Nr. It is equal to the
flock-size if the communication between the robots is global. If
the communication is range-limited, the quantity Nr accounts
for the number of visible neighbours in the limited range.

C. Proximal control

The obstacle avoidance plays an important role in the
flocking behaviour. The infra-red sensors of the individuals are
used to take care of the obstacles that might be encountered on
the way. When an obstacle is detected by one of the sensors,
a virtual force is computed and acts on the individual in the
opposite direction with respect to the sensor’s position. The
virtual force is denoted by the quantity fk computed as,

fk = − (ok)
2

C
(3)

where ok is the sensed value from the kth sensor. The virtual
force is computed only if the sensed value is above a minimum
threshold denoted by omin. This result is scaled by a constant
C which is equal to the sensors’ maximum detected value.

The proximal control vector is computed according the the
position angle φk of the kth sensor in the body-fixed reference
frame,

p =
1

Ns

Ns∑
k=1

fk exp(jφk) (4)

where Ns is the number of sensors.

D. Cohesion

The cohesion vector aims at keeping the individuals of the
flock together. In same way as for the proximal control, a
virtual force gj is computed as to prevent the individuals from
being too close or too far from each others. To do so, the
distance dj and angle ψj from the jth neighbour are computed.
The cohesion vector is computed as a sum of all the forces
with their respective direction for all the neighbours.

c =
∑
j∈Nr

gj exp(jψj) (5)

The angle ψj corresponds to the heading of the jth neigh-
bour with respect to the north. It is sent to the current robot
which can then express this angle in its body-fixed reference
frame knowing its own heading with respect to the north. The
distance dj is computed from the emitters that equips each
robot. One defines also a reference distance called dref which
is the target distance that should separate each robot from one-
another.

gj =

{
+ (dk − dref)

2 if dk ≥ dref
− (dk − dref)

2 if dk < dref
(6)

E. Migration control

The migration control vector r aims at indicting the way
all the individuals of the flock should follow. Therefore, the
error on the migration is computed as the difference between
the current heading angle of the individual with respect to the
North and the migration angle.

r = exp (j(θ − Φ)) (7)

F. Motion control

The motion control uses the the desired heading vector a
in order to compute the the forward velocity denoted by u
and the angular velocity denoted by ω. The forward velocity
is computed as follows.,

u =

{
a · ac if a · ac ≥ 0
0 otherwise (8)

where the vector ac represents the current heading vector
of the individual in the body-fixed reference frame. In other
words, ac as a unity component in the x axis and zero along
the y axis.

The angular velocity of the robot is the result of a pro-
portional controller with coefficient Kp applied on the error
between the phase of vectors ac and a. Therefore, the higher
the error between the desired direction and the current direc-
tion, the higher the angular velocity.

ω = Kp (ac − a) (9)

The forward velocity and the angular needs then to be
converted into useful data input for the robot. The rotational
speed of the right of left wheel can then be respectively
computed as follows.

EPFL, DISTRIBUTED INTELLIGENT SYSTEMS AND ALGORITHMS LABORATORY, ENG-466 DISTRIBUTED INTELIGENT SYSTEMS, DECEMBER 2015 4

NR =
(
u+

ω

2
l
) 1

2πRw
(10)

NL =
(
u− ω

2
l
) 1

2πRw
(11)

where Rw is the radius of the wheel of the robot and l
denotes its track.

Note that when the desired direction is opposite to the
robot’s current direction the forward velocity is limited to zero.
It makes it then possible for the robot turn on itself to get back
on the right track.

VI. FLOCKING METRICS

There are several ways to evaluate the performance of a
flock. In this project, it has been decided to measure the
performance of the flock according to three criterions. The
flocking individuals should be aligned toward a common
direction, move on a compact and coherent way and they
should move fast.

The first metric measures how the flock mates are oriented
with respect to the others and is given by equation 12. The
metric is normalized according to the size of the flock given
by N .

o[t] =
1

N

∣∣∣∣ N∑
k=1

exp (jψ[t])

∣∣∣∣ (12)

Second, the velocity of the flock is evaluated as the average
displacement velocity of the geometric center of mass along
the direction of the migration urge. This last is represented by
Φ.

v[t] =
1

vmax
max [projΦ(x[t]− x[t− 1])] (13)

The third metric, called the entropy, measures the positional
disorder of the flock. It is computed as,

s[t] =

∫ ∞
0

M∑
k=1

pk(h) log2(pk(h))dh (14)

where pk represents the proportion of individuals in the kth
cluster and M is the amount of clusters for a given distance
h. Two robots are considered to be in the same cluster if the
distance between then is less or equal to h.

Finally, the instantaneous performance p[t] of the flock at
a given time t is computed as the product of the three above
given metrics.

p[t] = o[t] v[t] s[t] (15)

Note that all the metrics are computed such that the result
of each of them yields a value between 0 and 1. The overall
performance of the flock for a given simulation can be
evaluated as the average of instantaneous performance over
the time simulation T .

p =
1

T

T∑
t=1

p[t] (16)

VII. PARTICLE SWARM OPTIMIZATION

In order to optimize the parameters of our controllers,
we have used the Particle Swarm Optimization algorithm.
This meta-heuristic technique can be used to search candidate
solutions in large combinatorial space. Moreover, it can be
adapted to be noise-resistant.

We have used it to optimize the Braitenberg parameters
for the Reynolds limited controller, and the parameters of the
Kikker controller we have implemented. We didn’t used PSO
to optimize the flocking parameters of the Reynolds controller
because it has been considered that they were good enough and
the limitation of this controller were the Braitenberg weights.

A. Experiments

In order to evaluate candidate solutions for both controllers,
we have created a special world in Webots where the flock
will go toward a long path containing various obstacles. In this
way, the obstacle avoidance strategy is tested several times for
each simulation. The simulation is stopped when a maximum
number of steps is completed. This number should be enough
to allow the flock to cross the arena of obstacles.

A run lasts around 5 minutes in Webots time. The fitness
used is the same as described in section "VI Flocking Metrics".
Moreover, each particle is evaluated several times in order to
have an average of its fitness. Indeed, a single evaluation might
not be representative of a good solution due to noise. Also,
we have run four instances of Webots in our machines using
multiple cores in order to accelerate the optimization process.

B. Reynolds Limited controller

Considering that the flocking parameters were already good
enough, it has been decided to take into consideration only
the Braitenberg weights of the obstacle avoidance controller.
Indeed, it has been observed that our flocks had some dif-
ficulties to handle obstacles correctly. Two approaches have
been experienced. The first one was to use a recursive feed
forward neural network, where a particle size is 26 (8 sensors,
2 recurrent weights and 1 bias, for each wheel). The second
one was assigning directly the weights in the Braitenberg
matrix with null values for the two back sensors. In this case,
a particle has a size of 12 (6 weights for each wheel).

The expected results were no met. The main reason is
that the evaluation of one particle is very time expensive,
around 5 minutes in Webots time (around 20 seconds in our
computers). Considering that certain number of particles (e.g.
10) have to be evaluated several times (e.g. 3), we have for
a single iteration around 10 minutes of computational time.
In order to find a good solution, hundreds of iterations might
be necessary and unfortunately we were only able to compute
approximately 20 iterations.

C. Kikker controller

The parameters that were taken into account to perform
the optimization of flocking behaviour are essentially the
weights introduced in the computation of the desired heading
direction a. More specifically it means that one desires to

EPFL, DISTRIBUTED INTELLIGENT SYSTEMS AND ALGORITHMS LABORATORY, ENG-466 DISTRIBUTED INTELIGENT SYSTEMS, DECEMBER 2015 5

tune on an optimal way the coefficient β, γ and δ such
that respectively the contribution of the obstacle avoidance,
cohesion and migration urge are well scaled.

One will also set the proportional gain of the angular
velocity controller as an optimization parameter. Indeed, its
value is expected to play a significant role in the performance
of the flocking. In addition, the parameter dref is also set as
an optimization parameter.

The table I gives to bounds considered on each parameter.
To run the algorithm, each optimization parameter has been
scaled between 0 and 1 according to the given bounds. It was
then specified in the algorithm that values respectively below
and above 0 and 1 are forbidden.

Name lower bound upper bound
β 1 20
γ 1 20
δ 0.01 2.0
Kp 0.1 1.5
dref 0.05 0.50

Table I
OPTIMIZATION PARAMETERS

It can be noticed that the number of parameters introduced
in PSO is now less than the ones introduced in the case of the
Reynolds controller. It was therefore expected to reach good
results in less iterations with the Kikker controller. Also, the
fact that the parameters are normalized should make it easier
for the PSO algorithm to find a solution.

After several simulations, interesting parameters were found
within the considered bounds. However the performances of
the flock were still not very satisfactory. In fact the same issue
as the other controller has probably been met and a higher
amount of iterations should be performed to come to a better
solution.

D. Results
In order to compare our baseline with parameters found

with PSO, we made 20 runs with our flock on the world
obstacles.wbt. A run consist of an experiment where the flock
go through the world until reaching the other side. Table II
we reported the mean and the standard deviation.

Parameters performance
Baseline 0.124± 0.018

β = .38, γ = .33, δ = .69,Kp = 1.00, dref = .34 0.100± 0.020
β = .38, γ = .29, δ = .87,Kp = .94, dref = .36 0.111± 0.020

Table II
PERF COMPARISON BETWEEN BASELINE AND PARAMETERS FROM PSO

We can observe that our baseline has the best performance
in term of mean and also in term of standard deviation. The
results found by PSO are not as good in term of mean and
also have a greater standard deviation. However, we strongly
think that we more iteration and more times, we could find a
solution which should be better than our baseline.

VIII. RESULTS

The three flocking controllers, i.e. the unlimited range
Reynolds, the limited range Reynolds, and the Kikker con-
troller, will now be compared in performance. For each

algorithm, we have made 20 runs with our flock on the
obstacles.wbt world which contains 5 robots and some blocks
to test the flocking behaviour. A run consist of the time
the whole flock takes to get to the end of the world. First
will be compared the metrics against each algorithm. Indeed,
the metrics result is good a global indicator of the flock
performance.

Algorithm mean perf standard deviation
Unlimited Reynolds 0.217 0.013
Limited Reynolds 0.210 0.012
Kikker controller 0.131 0.010

Table III
PERFORMANCE OF OUR FLOCKING ALGORITHMS

It can first be noticed that the limited and unlimited
Reynolds algorithm have a similar performance. This result is
very important as it indicates that the limited implementation
approach would allow some real robots to drastically improve
their energy efficiency. Therefore, it would be possible to
consider large-scale flocks for real experiments with that kind
of scalable controller.

The Kikker controller is shown to be less efficient in terms
of performances than the other classical algorithms. However,
when its behaviour is observed in simulation it presents no
apparent problems compared to the Reynolds algorithm. It
even seems to work its way better around the obstacles because
the flock mates seem to be able to wait one another. In fact,
the performance is lowered because the robots are much more
slower with that kind of controller.

The metrics takes into account the speed of the robots to
their migration point and the compactness (entropy) of the
flock. These two metrics are well achieved by the Reynolds
algorithm, since it creates a really compact flock going fast.
However the flock can have some problems with the obstacles
due to the Braitenberg algorithm built into Reynolds. This
problem is also shown in the standard deviation of our results
which show that the Reynolds algorithm produces results that
are less consistent than the kikker controller, a robot can lag
behind because of an obstacle which can lower entropy.

One can argue that the fact that an algorithm is more robust
to all type of inputs would make it better than another one
which doesn’t, but the fact that the Reynolds flock is compact
allow us to use the limited range algorithm. Whereas the kikker
controller has a more loosely compacted flock which does a lot
of exploration which means that the limited range should be
much greater than the Reynolds flock, limiting the advantages
we listed and made us implement this method. This means
that the Reynolds algorithm is more suited to a flock with a
great number of simple robots, with little computing power and
battery, whereas the Kikker controller is more suited to a more
complex and natural flock with robots of higher complexity.

Algorithm time
Unlimited Reynolds 4min
Limited Reynolds 4min
Kikker controller 5min 30sec

Table IV
TIME TO GET THROUGH obstacles.wbt

EPFL, DISTRIBUTED INTELLIGENT SYSTEMS AND ALGORITHMS LABORATORY, ENG-466 DISTRIBUTED INTELIGENT SYSTEMS, DECEMBER 2015 6

The time taken is, as expected, again in favour of the
Reynolds algorithm which takes the shortest path to get to
the migration point. The Kikker controller, on the other hand,
have the added advantage that the robots cover more terrain to
avoid the obstacles and can navigate through a more complex
world.

A. Flock collision

The controller has also been tested with two flocks having
to cross each other. The challenge here is that the obstacles are
the robots of the other flocks, which are now moving obstacles
and should introduce additional noise in the simulation. This
experiment is also a good way to see what are the problems
of our implementations and to compare the diverse algorithms
we have.

Algorithm time
Limited Reynolds 1min 40sec
Kikker controller 3min to 5min

Table V
TIME TO GET THROUGH A COLLISION OF 2 FLOCKS OF 5 ROBOTS EACH

The Kikker controller is slower than the Reynolds algo-
rithm. But on the obstacles.wbt world, the fact that the Kikker
controller is slower present one advantage. It allows indeed
the flock to find a better solution to avoid obstacles.

The Reynolds controller is faster the Kikker controller as it
will take a quick decision on the path to go through the other
flock. The Kikker controller, more hesitant, will have some
troubles to get through the other flock as much hesitant.

IX. CONCLUSION

In a nutshell, two different kind of controllers have been
implemented and tested. Their parameters have also been
optimized using Particle Swarm Optimization with mixed
results. Each of them present advantages and drawbacks.

First, the Reynold controller was implemented with unlim-
ited range and yields good flocking results. However, its non
scalable character make it difficult to justify a real experiments
with a large amount of robots. This problem was tackled by
implementing a limited range controller where there is only
communication within a certain range. It has been shown that
this local communication approach yields the same results
as the unlimited approach. It presents also the significant
advantage of being very scalable for real applications as well
as it could significantly improve the energy efficiency of the
e-pucks, without requiring a supervisor.

Second, the Kikker controller might be more expensive in
terms of computation time because it is a bit more complex.
Also, the results have shown that it does not yield better
performances that the first controllers. The main raison for this
result is that the Kikker controller makes the robots slightly
more slower. However, it has been observed during simulation
that the flock can wait for flock-mates who could eventually
have difficulties to avoid certain obstacles, the fact that it is
more computationally intensive that the Reynolds controller
allows the flock to take more intelligent decisions, while being
free of any supervisor.

Third, performing Particle Swarm Optimization on the
controllers does not yield the expected results even if the
solution is still good. We believe indeed that running PSO
for much more iterations could potentially lead us to better
solutions. The Reynolds controller as it is, already creates
a flocking behaviour that is compact and fast and is able
to navigate through obstacles. The Braitenberg routine of
the Reynolds algorithm would take advantage of having its
parameters tuned by PSO, since its high number and the high
variance of the results makes it hard to tune by hand, but the
randomness of our runs, the high number of parameters and
the fact that each runs take a long time means that the PSO
algorithm takes a really long time to converge to a solution
which could improve on our current one.
The Kikker controller is more complex in terms of
computation but have an enormous advantage in terms
of optimization over the Braitenberg/Reynolds combination:
it has less parameters defining its behaviour. Indeed, despite
the apparent complexity of the Kikker controller, it was
easier to find a satisfactory solution with PSO since it has
few parameters to optimize. Where it would take hundreds
or thousands of hours to find a Braitenberg solution. We are
able to find a Kikker solution in hours.

In the end, we have two controllers, representing two
opposite spectrums of the flock algorithms. On one side, we
have the Reynolds controller which is a simple algorithm
that we can describe in a few words and can work on any
microcontroller. Its compactness allowed us to tinker and be
able to create a limited communication scheme on it. But can
be hard to fine-tune given the large amount of parameters.
On the other side we have the Kikker algorithm, more
complex but more resistant to the noisy input of a world filled
with obstacles. The small amount of parameters allowed us
to easly optimize its behaviour to finally have a flock that
can navigate through obstacles in a natural way.
This difference is reflected on the flock collision world, where
the more forward Reynolds controller can find its way faster
than the more hesitant and careful Kikker controller.

REFERENCES

[1] Ali E. Turgut. Hande Çelikkanat. Fatih Gokçe and Eraol Sahin, Self-
organized flocking in mobile robot swarms, Swarm Intell, 2008.

