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Abstract

Automated predictions require explanations to be interpretable
by humans. Past work used attention and rationale mechanisms
to find words that predict the target variable of a document.
Often though, they result in a tradeoff between noisy explana-
tions or a drop in accuracy. Furthermore, rationale methods
cannot capture the multi-faceted nature of justifications for
multiple targets, because of the non-probabilistic nature of
the mask. In this paper, we propose the Multi-Target Masker
(MTM) to address these shortcomings. The novelty lies in the
soft multi-dimensional mask that models a relevance proba-
bility distribution over the set of target variables to handle
ambiguities. Additionally, two regularizers guide MTM to in-
duce long, meaningful explanations. We evaluate MTM on
two datasets and show, using standard metrics and human
annotations, that the resulting masks are more accurate and
coherent than those generated by the state-of-the-art methods.
Moreover, MTM is the first to also achieve the highest F1
scores for all the target variables simultaneously.

1 Introduction
Neural models have become the standard for natural lan-
guage processing tasks. Despite the large performance gains
achieved by these complex models, they offer little trans-
parency about their inner workings. Thus, their performance
comes at the cost of interpretability, limiting their practical
utility. Integrating interpretability into a model would supply
reasoning for the prediction, increasing its utility.

Perhaps the simplest means of explaining predictions of
complex models is by selecting relevant input features. Prior
work includes various methods to find relevant words in
the text input to predict the target variable of a document.
Attention mechanisms (Bahdanau, Cho, and Bengio 2015;
Luong, Pham, and Manning 2015) model the word selec-
tion by a conditional importance distribution over the inputs,
used as explanations to produce a weighted context vector
for downstream modules. However, their reliability has been
questioned (Jain and Wallace 2019; Pruthi et al. 2020). An-
other line of research includes rationale generation methods
(Lundberg and Lee 2017; Li, Monroe, and Jurafsky 2016;
Lei, Barzilay, and Jaakkola 2016). If the selected text input
features are short and concise – called a rationale or mask –
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attending an all ! - ! day b ! - day party at
! 3 ! p.m. ! , ! i thought i ’d take it easy !
at ! first ! , and i was ! thirsty and ! craving
some ! fruit ! , ! so ! ... ! the beer pours !
a slightly ! cloudy pale straw colour , with
a few fingers of soapy white head . it smells
quite strongly of sweet apricot and peach !
. ! the ! taste is very fruity - ! lychee ! , !
peach ! , ! passionfruit ! , a bit of ! candied
! sugar ! . the ! faint wheat ! grain base is
pretty ! much masked by all of this fruitiness
! . the ! carbonation is on the low side ! ,
the body kind of ! sticky , and it ! finishes !
sweet and clean ! . ! very refreshing ! , more
like juice ! than beer ! , as the ! low ! abv
does n’t really render any alcohol ! warming
! . ! a tasty example of ! the ! fringe ! of !
what can be ! considered beer ! .

attending an all - day b - day party at 3 p.m.
, i thought i ’d take it easy at first , and i
was thirsty and craving some fruit , so ... the
beer pours a slightly cloudy pale straw colour ,
a few fingers of soapy white head ! . it smells
quite strongly of sweet apricot and peach !
. the taste is very fruity - lychee , peach ,
passionfruit , a bit of candied sugar . the faint
wheat grain base is pretty ! much masked by
all of this fruitiness . the carbonation is on
the low side , the body kind of sticky , and
it finishes sweet and clean . very refreshing
, more like juice than beer , as the low abv
does n’t really render any alcohol warming .
a tasty example of the fringe of what can be
considered beer .

Aspect Changes ?: 56 Aspect Changes ?: 3

Figure 1: A beer review with explanations produced by an
attention model and our Multi-Target Masker model. The
colors depict produced rationales (i.e., justifications) of the
rated aspects: Appearance, Smell, Taste, and Palate. The
induced rationales mostly lead to long sequences that clearly
describe each aspect (one switch ? per aspect), while the
attention model has many short, noisy interleaving sequences.

and suffice on their own to yield the prediction, it can poten-
tially be understood and verified against domain knowledge
(Lei, Barzilay, and Jaakkola 2016; Chang et al. 2019). Specif-
ically, these rationale generation methods have been recently
proposed to provide such explanations alongside the predic-
tion. Ideally, a good rationale should yield the same or higher
performance as using the full input.

The key motivation of our work arises from the limita-
tions of the existing methods. First, the attention mechanisms
induce an importance distribution over the inputs, but the
resulting explanation consists of many short and noisy word
sequences (Figure 1). In addition, the rationale generation
methods produce coherent explanations, but the rationales are
based on a binary selection of words, leading to the following
shortcomings: 1. they explain only one target variable, 2. they
make a priori assumptions about the data, and 3. they make it
difficult to capture ambiguities in the text. Regarding the first
shortcoming, rationales can be multi-faceted by definition
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and involve support for different outcomes. If that is the case,
one has to train, tune, and maintain one model per target
variable, which is impractical. For the second, current models
are prone to pick up spurious correlations between the input
features and the output. Therefore, one has to ensure that
the data have low correlations among the target variables,
although this may not reflect the real distribution of the data.
Finally, regarding the last shortcoming, a strict assignment of
words as rationales might lead to ambiguities that are difficult
to capture. For example, in an hotel review that states “The
room was large, clean, and close to the beach.”, the word

“room” refers to the aspects Room, Cleanliness, and Location.
All these limitations are implicitly related due to the non-
probabilistic nature of the mask. For further illustrations, see
Figure 3 and the appendices.

In this work, we take the best of the attention and ratio-
nale methods and propose the Multi-Target Masker to address
their limitations by replacing the hard binary mask with a soft
multi-dimensional mask (one for each target), in an unsuper-
vised and multi-task learning manner, while jointly predicting
all the target variables. We are the first to use a probabilistic
multi-dimensional mask to explain multiple target variables
jointly without any assumptions on the data, unlike previ-
ous rationale generation methods. More specifically, for each
word, we model a relevance probability distribution over the
set of target variables plus the irrelevant case, because many
words can be discarded for every target. Finally, we can con-
trol the level of interpretability by two regularizers that guide
the model in producing long, meaningful rationales. Com-
pared to existing attention mechanisms, we derive a target
importance distribution for each word instead of one over the
entire sequence length.

Traditionally, interpretability came at the cost of reduced
performance. In contrast, our evaluation shows that on two
datasets, in beer and hotel review domains, with up to five
correlated targets, our model outperforms strong attention
and rationale baselines approaches and generates masks that
are strong feature predictors and have a meaningful interpre-
tation. We show that it can be a benefit to: 1. guide the model
to focus on different parts of the input text, 2. capture ambi-
guities of words belonging to multiple aspects, and 3. further
improve the sentiment prediction for all the aspects. Thus,
interpretability does not come at a cost in our paradigm.

2 Related Work
2.1 Interpretability
Developing interpretable models is of considerable interest
to the broader research community; this is even more pro-
nounced with neural models (Kim, Shah, and Doshi-Velez
2015; Doshi-Velez and Kim 2017). There has been much
work with a multitude of approaches in the areas of analyzing
and visualizing state activation (Karpathy, Johnson, and Li
2015; Li et al. 2016; Montavon, Samek, and Müller 2018),
attention weights (Jain and Wallace 2019; Serrano and Smith
2019; Pruthi et al. 2020), and learned sparse and interpretable
word vectors (Faruqui et al. 2015b,a; Herbelot and Vecchi
2015). Other works interpret black box models by locally
fitting interpretable models (Ribeiro, Singh, and Guestrin

2016; Lundberg and Lee 2017). (Li, Monroe, and Jurafsky
2016) proposed erasing various parts of the input text using
reinforcement learning to interpret the decisions. However,
this line of research aims at providing post-hoc explanations
of an already-trained model. Our work differs from these
approaches in terms of what is meant by an explanation and
its computation. We defined an explanation as one or multi-
ple text snippets that – as a substitute of the input text – are
sufficient for the predictions.

2.2 Attention-based Models
Attention models (Vaswani et al. 2017; Yang et al. 2016; Lin
et al. 2017) have been shown to improve prediction accu-
racy, visualization, and interpretability. The most popular and
widely used attention mechanism is soft attention (Bahdanau,
Cho, and Bengio 2015), rather than hard attention (Luong,
Pham, and Manning 2015) or sparse ones (Martins and As-
tudillo 2016). According to various studies (Jain and Wallace
2019; Serrano and Smith 2019; Pruthi et al. 2020), stan-
dard attention modules noisily predict input importance; the
weights cannot provide safe and meaningful explanations.
Moreover, (Pruthi et al. 2020) showed that standard atten-
tion modules can fool people into thinking that predictions
from a model biased against gender minorities do not rely
on the gender. Our approach differs in two ways from atten-
tion mechanisms. First, the loss includes two regularizers to
favor long word sequences for interpretability. Second, the
normalization is not done over the sequence length but over
the target set for each word; each has a relevance probability
distribution over the set of target variables.

2.3 Rationale Models
The idea of including human rationales during training has
been explored in (Zhang, Marshall, and Wallace 2016; Bao
et al. 2018; DeYoung et al. 2020). Although they have been
shown to be beneficial, they are costly to collect and might
vary across annotators. In our work, no annotation is needed.

One of the first rationale generation methods was intro-
duced by (Lei, Barzilay, and Jaakkola 2016) in which a gener-
ator masks the input text fed to the classifier. This framework
is a cooperative game that selects rationales to accurately pre-
dict the label by maximizing the mutual information (Chen
et al. 2018). (Yu et al. 2019) proposed conditioning the gener-
ator based on the predicted label from a classifier reading the
whole input, although it slightly underperformed when com-
pared to the original model (Chang et al. 2020). (Chang et al.
2019) presented a variant that generated rationales to perform
counterfactual reasoning. Finally, (Chang et al. 2020) pro-
posed a generator that can decrease spurious correlations in
which the selective rationale consists of an extracted chunk of
a pre-specified length, an easier variant than the original one
that generated the rationale. In all, these models are trained to
generate a hard binary mask as a rationale to explain the pre-
diction of a target variable, and the method requires as many
models to train as variables to explain. Moreover, they rely on
the assumption that the data have low internal correlations.

In contrast, our model addresses these drawbacks by jointly
predicting the rationales of all the target variables (even in
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Figure 2: The proposed Multi-Target Masker (MTM) model
architecture to predict and explain T target variables.

the case of highly correlated data) by generating a soft multi-
dimensional mask. The probabilistic nature of the masks can
handle ambiguities in the induced rationales. In our recent
work (Antognini, Musat, and Faltings 2020), we show how to
use the induced rationales to generate personalized explana-
tions for recommendation and how human users significantly
prefer these over those produced by state-of-the-art models.

3 The Multi-Target Masker (MTM)
Let X be a random variable representing a document
composed of L words (x1, x2, ..., xL), and Y the target
T -dimensional vector.1 Our proposed model, called the
Multi-Target Masker (MTM), is composed of three com-
ponents: 1) a masker module that computes a probability
distribution over the target set for each word, resulting in
T + 1 masks (including one for the irrelevant case); 2) an
encoder that learns a representation of a document X condi-
tioned on the induced masks; 3) a classifier that predicts the
target variables. The overall model architecture is shown in
Figure 2. Each module is interchangeable with other models.

3.1 Model Overview
Masker. The masker first computes a hidden representation
h` for each word x` in the input sequence, using their word
embeddings e1, e2, ..., eL. Many sequence models could re-
alize this task, such as recurrent, attention, or convolution
networks. In our case, we chose a recurrent model to learn
the dependencies between the words. Let ti be the ith target
for i = 1, ..., T , and t0 the irrelevant case, because many
words are irrelevant to every target. We define the multi-
dimensional mask M 2 R(T+1)⇥L as the target relevance
distribution M ` 2 R(T+1) of each word x` as follows:

P (M|X) =
LY

`=1

P (M `|x`) =
LY

`=1

TY

i=0

P (m`
ti |x

`) (1)

Because we have categorical distributions, we cannot di-
rectly sample P (M `|x`) and backpropagate the gradi-
ent through this discrete generation process. Instead, we
model the variable m`

ti using the straight through gumbel-
softmax (Jang, Gu, and Poole 2017; Maddison, Mnih, and

1Our method is easily adapted for regression problems.

Teh 2017) to approximate sampling from a categorical distri-
bution.2 We model the parameters of each Gumbel-Softmax
distribution M ` with a single-layer feed-forward neural
network followed by applying a log softmax, which in-
duces the log-probabilities of the `th distribution: !` =
log(softmax(Wh`+b)). W and b are shared across all tokens
so that the number of parameters stays constant with respect
to the sequence length. We control the sharpness of the distri-
butions with the temperature parameter ⌧ , which dictates the
peakiness of the relevance distributions. In our case, we keep
the temperature low to enforce the assumption that each word
is relevant about one or two targets. Note that compared to at-
tention mechanisms, the word importance is a probability dis-
tribution over the targets

PT
i=0 P (m`

ti |x
`) = 1 instead of a

normalization over the sequence length
PL

`=1 P (t`|x`) = 1.
Given a soft multi-dimensional mask M 2 R(T+1)⇥L, we

define each sub-mask Mti 2 RL as follows:

Mti = P (m1
ti |x

1), P (m2
ti |x

2), ..., P (mL
ti |x

L) (2)

To integrate the word importance of the induced sub-masks
Mti within the model, we weight the word embeddings by
their importance towards a target variable ti, such that Eti =
E�Mti = e1·P (m1

ti |x
1), e2·P (m2

ti |x
2), ..., eL·P (mL

ti |x
L).

Thereafter, each modified embedding Eti is fed into the
encoder block. Note that Et0 is ignored because Mt0 only
serves to absorb probabilities of words that are insignificant.3

Encoder and Classifier. The encoder includes a convolu-
tional network, followed by max-over-time pooling to obtain
a fixed-length feature vector. We chose a convolutional net-
work because it led to a smaller model, faster training, and
performed empirically similarly to recurrent and attention
models. It produces the fixed-size hidden representation hti
for each target ti. To exploit commonalities and differences
among the targets, we share the weights of the encoder for
all Eti . Finally, the classifier block contains for each target
variable ti a two-layer feedforward neural network, followed
by a softmax layer to predict the outcome ŷti .

Extracting Rationales. To explain the prediction ŷti of
one target Yti , we generate its rationale by selecting each
word x`, whose relevance towards ti is the most likely:
P (m`

ti |x
`) = maxj=0,...,T P (m`

tj |x
`). Then, we can inter-

pret P (m`
ti |x

`) as the model confidence of x` relevant to Yti .

3.2 Enabling the Interpretability of Masks
The first objective to optimize is the prediction loss, repre-
sented as the cross-entropy between the true target label yti
and the prediction ŷti as follows:

`pred =
TX

i=1

`cross entropy(yti , ŷti) (3)

2We also experimented with the implicit reparameterization trick
using a Dirichlet distribution (Figurnov, Mohamed, and Mnih 2018)
instead, but we did not obtain a significant improvement.

3if P (m`
t0 |x

`) ⇡ 1.0, it implies
PT

i=1 P (m`
ti |x

`) ⇡ 0 and
consequently, e`ti ⇡ ~0 for i = 0, ..., T .



However, training MTM to optimize `pred will lead to mean-
ingless sub-masks Mti because the model tends to focus on
certain words. Consequently, we guide the model to produce
long, meaningful word sequences, as shown in Figure 1. We
propose two regularizers to control the number of selected
words and encourage consecutive words to be relevant to the
same target. For the first term, we calculate the probability
psel of tagging a word as relevant to any target as follows:

psel =
1

L

LX

`=1

�
1� P (m`

t0 |x
`)
�

(4)

We then compute the cross-entropy with a prior hyperparam-
eter �p to control the expected number of selected words
among all target variables, which corresponds to the expec-
tation of a binomial distribution (psel). We minimize the
difference between psel and �p as follows:

`sel = `binary cross entropy(psel,�p) (5)

The second regularizer discourages the target transition of
two consecutive words by minimizing the mean variation
of their target distributions, M ` and M `�1. We generalize
the formulation of a hard binary selection as suggested by
(Lei, Barzilay, and Jaakkola 2016) to a soft probabilistic
multi-target selection as follows:4

pdis =
1

L

LX

`=1

����M ` �M `�1
����
1

A+ 1

`cont = `binary cross entropy(pdis, 0)

(6)

We train our Multi-Target Masker end to end and optimize
the loss `MTM = `pred + �sel · `sel + �cont · `cont, where
�sel and �cont control the impact of each constraint.

4 Experiments
We assess our model in two dimensions: the quality of the
explanations, obtained from the masks, and the predictive
performance. Following previous work (Lei, Barzilay, and
Jaakkola 2016; Chang et al. 2020), we use sentiment analysis
as a demonstration use case, but we extend it to the multi-
aspect case. However, we are interested in learning rationales
for every aspect at the same time without any prior assump-
tion on the data, where aspect ratings can be highly correlated.
We first measure the quality of the induced rationales using
human aspect sentence-level annotations and an automatic
topic model evaluation method. In the second set of exper-
iments, we evaluate MTM on the multi-aspect sentiment
classification task in two different domains.5

4.1 Experimental Details
The review encoder was either a bi-directional recurrent neu-
ral network using LSTM (Hochreiter and Schmidhuber 1997)
with 50 hidden units or a multi-channel text convolutional
neural network, similar to (Kim, Shah, and Doshi-Velez

4Early experiments with other distance functions, such as the
Kullback–Leibler divergence, produced inferior results.

5Code & data available at https://github.com/Diego999/MTM.

Dataset Beer Hotel
Number of reviews 1, 586, 259 140, 000
Average words per review 147.1± 79.7 188.3± 50.0
Average sentences per review 10.3± 5.4 10.4± 4.4
Number of Aspects 4 5
Avg./Max corr. between aspects 71.8%/73.4% 63.0%/86.5%

Table 1: Statistics of the multi-aspect review datasets. Both
datasets have high correlations between aspects.

2015), with 3-, 5-, and 7-width filters and 50 feature maps
per filter. Each aspect classifier is a two-layer feedforward
neural network with a rectified linear unit activation func-
tion (Nair and Hinton 2010). We used the 200-dimensional
pre-trained word embeddings of (Lei, Barzilay, and Jaakkola
2016) for beer reviews. For the hotel domain, we trained
word2vec (Mikolov et al. 2013) on a large collection of hotel
reviews (Antognini and Faltings 2020) with an embedding
size of 300. We used a dropout (Srivastava et al. 2014) of 0.1,
clipped the gradient norm at 1.0, added a L2-norm regularizer
with a factor of 10�6, and trained using early stopping. We
used Adam (Kingma and Ba 2015) with a learning rate of
0.001. The temperature ⌧ for the Gumbel-Softmax distribu-
tions was fixed at 0.8. The two regularizers and the prior of
our model were �sel = 0.03, �cont = 0.03, and �p = 0.15
for the Beer dataset and �sel = 0.02, �cont = 0.02, and
�p = 0.10 for the Hotel one. We ran all experiments for a
maximum of 50 epochs with a batch-size of 256. We tuned
all models on the dev set with 10 random search trials.

4.2 Datasets
(McAuley, Leskovec, and Jurafsky 2012) provided 1.5 mil-
lion English beer reviews from BeerAdvocat. Each contains
multiple sentences describing various beer aspects: Appear-
ance, Smell, Palate, and Taste; users also provided a five-
star rating for each aspect. To evaluate the robustness of the
models across domains, we sampled 140 000 hotel reviews
from (Antognini and Faltings 2020), that contains 50 million
reviews from TripAdvisor. Each review contains a five-star
rating for each aspect: Service, Cleanliness, Value, Location,
and Room. The descriptive statistics are shown in Table 1.

There are high correlations among the rating scores of
different aspects in the same review (71.8% and 63.0% on
average for the beer and hotel datasets, respectively). This
makes it difficult to directly learn textual justifications for
single-target rationale generation models (Chang et al. 2020,
2019; Lei, Barzilay, and Jaakkola 2016). Prior work used sep-
arate decorrelated train sets for each aspect and excluded as-
pects with a high correlation, such as Taste, Room, and Value.
However, these assumptions do not reflect the real data dis-
tribution. Therefore, we keep the original data (and thus can
show that our model does not suffer from the high correla-
tions). We binarize the problem as in previous work (Bao
et al. 2018; Chang et al. 2020): ratings at three and above are
labeled as positive and the rest as negative. We split the data
into 80/10/10 for the train, validation, and test sets. Com-
pared to the beer reviews, the hotel ones were longer, noisier,
and less structured, as shown in Appendices A.3 and A.2.



4.3 Baselines
We compare our Multi-Target Masker (MTM) with various
baselines. We group them in three levels of interpretability:
• None. We cannot extract the input features the model used

to make the predictions;
• Coarse-grained. We can observe what parts of the input a

model used to discriminate all aspect sentiments without
knowing what part corresponded to what aspect;

• Fine-grained. For each aspect, a model selects input fea-
tures to make the prediction.
We first use a simple baseline, SENT, that reports the ma-

jority sentiment across the aspects, as the aspect ratings are
highly correlated. Because this information is not available
at testing, we trained a model to predict the majority senti-
ment of a review as suggested by (Wang and Manning 2012).
The second baseline we used is a shared encoder followed
by T classifiers that we denote BASE. These models do not
offer any interpretability. We extend it with a shared atten-
tion mechanism (Bahdanau, Cho, and Bengio 2015) after the
encoder, noted as SAA in our study, that provides a coarse-
grained interpretability; for all aspects, SAA focuses on the
same words in the input.

Our final goal is to achieve the best performance and pro-
vide fine-grained interpretability in order to visualize what
sequences of words a model focuses on to predict the as-
pect sentiments. To this end, we include other baselines: two
trained separately for each aspect (e.g., current rationale
models) and two trained with a multi-aspect sentiment loss.
For the first ones, we employ the the well-known NB-SVM
(Wang and Manning 2012) for sentiment analysis tasks, and
we then use the Single-Aspect Masker (SAM) (Lei, Barzilay,
and Jaakkola 2016), each trained separately for each aspect.

The two last methods contain a separate encoder, attention
mechanism, and classifier for each aspect. We utilize two
types of attention mechanisms, additive (Bahdanau, Cho, and
Bengio 2015) and sparse (Martins and Astudillo 2016), as
sparsity in the attention has been shown to induce useful,
interpretable representations. We call them Multi-Aspect At-
tentions (MAA) and Sparse-Attentions (MASA), respectively.
Diagrams of the baselines can be found in Appendix A.4.

We demonstrate that the induced sub-masks Mti , ...,MtT
computed from MTM, bring fine-grained interpretability and
are meaningful for other models to improve performance.
To do so, we extract and concatenate the masks to the word
embeddings, resulting in contextualized embeddings (Peters
et al. 2018), and train BASE with those. We call this variant
MTMC, that is smaller and has faster inference than MTM.

5 Results
5.1 Multi-Rationale Interpretability
We first verify whether the inferred rationales of MTM are
meaningful and interpretable, compared to the other models.

Precision. Evaluating explanations that consist of coherent
pieces of text is challenging because there is no gold stan-
dard for reviews. (McAuley, Leskovec, and Jurafsky 2012)
have provided 994 beer reviews with sentence-level aspect

Precision / % Highlighted Words
Model Smell Palate Appearance

NB-SVM* 21.6 / 7% 24.9 / 7% 38.3 / 13%
SAA* 88.4 / 7% 65.3 / 7% 80.6 / 13%
SAM* 95.1 / 7% 80.2 / 7% 96.3 / 14%
MASA 87.0 / 4% 42.8 / 5% 74.5 / 4%
MAA 51.3 / 7% 32.9 / 7% 44.9 / 14%
MTM 96.6 / 7% 81.7 / 7% 96.7 / 14%

* Model trained separately for each aspect.

Table 2: Performance related to human evaluation, showing
the precision of the selected words for each aspect of the
Beer dataset. The percentage of words indicates the number
of highlighted words of the full review.

annotations (although our model computes masks at a finer
level). Each sentence was annotated with one aspect label,
indicating what aspect that sentence covered. We evaluate
the precision of the words selected by each model, as in (Lei,
Barzilay, and Jaakkola 2016). We use trained models on the
Beer dataset and extracted a similar number of selected words
for a fair comparison. We also report the results of the models
from (Lei, Barzilay, and Jaakkola 2016): NB-SVM, the Single-
Aspect Attention and Masker (SAA and SAM, respectively);
they use the separate decorrelated train sets for each aspect
because they compute hard masks.6

Table 2 presents the precision of the masks and atten-
tions computed on the sentence-level aspect annotations.
We show that the generated sub-masks obtained with our
Multi-Target Masker (MTM) correlates best with the human
judgment. In comparison to SAM, the MTM model obtains
significantly higher precision with an average of +1.13. In-
terestingly, NB-SVM and attention models (SAA, MASA, and
MAA) perform poorly compared with the mask models, espe-
cially MASA, which focuses only on a couple of words due
to the sparseness of the attention. In Appendix D, we also
analyze the impact of the length of the explanations.

Semantic Coherence. In addition to evaluating the ratio-
nales with human annotations, we compute their semantic
interpretability. According to (Aletras and Stevenson 2013;
Lau, Newman, and Baldwin 2014), normalized point mutual
information (NPMI) is a good metric for the qualitative eval-
uation of topics because it matches human judgment most
closely. However, the top-N topic words used for evaluation
are often selected arbitrarily. To alleviate this problem, we
followed (Lau and Baldwin 2016). We compute the topic
coherence over several cardinalities and report the results and
average (see Appendix A.1); those authors claimed that the
mean leads to a more stable and robust evaluation.

The results are shown in Table 3. We show that the com-
puted masks by MTM lead to the highest mean NPMI and,
on average, 20% superior results in both datasets, while only
needing a single training. Our MTM model significantly out-
performs SAM and the attention models (MASA and MAA)
for N � 20 and N = 5. For N = 10 and N = 15, MTM

6When trained on the original data, they performed significantly
worse, showing the limitation in handling correlated variables.



NPMI

Model N = 5 10 15 20 25 30 Mean
†

Beer
SAM* 0.046 0.120 0.129 0.243 0.308 0.396 0.207
MASA 0.020 0.082 0.130 0.168 0.234 0.263 0.150
MAA 0.064 0.189 0.255 0.273 0.332 0.401 0.252
MTM 0.083 0.187 0.264 0.348 0.477 0.410 0.295

Hotel
SAM* 0.041 0.103 0.152 0.180 0.233 0.281 0.165
MASA 0.043 0.127 0.166 0.295 0.323 0.458 0.235
MAA 0.128 0.218 0.352 0.415 0.494 0.553 0.360
MTM 0.134 0.251 0.349 0.496 0.641 0.724 0.432

* Model trained separately for each aspect.
†

The metric that correlates best with human judgment (Lau
and Baldwin 2016).

Table 3: Performance on automatic evaluation, showing
the average topic coherence (NPMI) across different top-
N words for each dataset. We considered each aspect ai as a
topic and used the masks/attentions to compute P (w|ai).

obtains higher scores in two out of four cases (+.033 and
+.009). For the other two, the difference was below .003.
SAM obtains poor results in all cases.

We analyzed the top words for each aspect by conducting
a human evaluation to identify intruder words (i.e., words not
matching the corresponding aspect). Generally, our model
found better topic words: approximately 1.9 times fewer
intruders than other methods for each aspect and each dataset.
More details are available in Appendix A.1.

5.2 Multi-Aspect Sentiment Classification
We showed that the inferred rationales of MTM were signifi-
cantly more accurate and semantically coherent than those
produced by the other models. Now, we inquire as to whether
the masks could become a benefit rather than a cost in perfor-
mance for the multi-aspect sentiment classification.

Beer Reviews. We report the macro F1 and individual
score for each aspect Ai. Table 4 (top) presents the results
for the Beer dataset. The Multi-Target Masker (MTM) per-
forms better on average than all the baselines and provided
fine-grained interpretability. Moreover, MTM has two times
fewer parameters than the aspect-wise attention models.

The contextualized variant MTMC achieves a macro F1
score absolute improvement of 0.44 and 2.49 compared to
MTM and BASE, respectively. These results highlight that the
inferred masks are meaningful to improve the performance
while bringing fine-grained interpretability to BASE. It is 1.5
times smaller than MTM and has a faster inference.

NB-SVM, which offers fine-grained interpretability and
was trained separately for each aspect, significantly underper-
forms when compared to BASE and, surprisingly, to SENT.
As shown in Table 1, the sentiment correlation between any
pair of aspects of the Beer dataset is on average 71.8%. There-
fore, by predicting the sentiment of one aspect correctly, it is
likely that other aspects share the same polarity. We suspect

Service Cleanliness Value Location Room

Multi-Target Masker (Ours)
stayed at the parasio 10 apartments early april 2011 . reception sta↵ absolutely
fantastic , great customer service .. ca nt fault at all ! we were on the 4th floor ,
facing the front of the hotel .. basic , but nice and clean . good location , not too
far away from the strip and beach ( 10 min walk ) . however .. do not go out alone
at night at all ! [...] plenty of laughs and everything is very cheap ! beer - 1euro !
fryups - 2euro . would go back again , but maybe stay somewhere else closer to the
beach ( sol pelicanos etc ) .. this hotel is next to an alley called ’ muggers alley ’

Single-Aspect Masker
stayed at the parasio 10 apartments early april 2011 . reception sta↵ absolutely

fantastic , great customer service .. ca nt fault at all ! we were on the 4th floor ,

facing the front of the hotel .. basic , but nice and clean . good location , not too

far away from the strip and beach ( 10 min walk ) . however .. do not go out alone
at night at all ! [...] plenty of laughs and everything is very cheap ! beer - 1euro !
fryups - 2euro . would go back again , but maybe stay somewhere else closer to the
beach ( sol pelicanos etc ) .. this hotel is next to an alley called ’ muggers alley ’

Multi-Aspect Attentions
stayed at the parasio 10 apartments early april 2011 . reception sta↵ absolutely
fantastic , great customer service .. ca nt fault at all ! we were on the 4th floor ,
facing the front of the hotel .. basic , but nice and clean . good location , not too
far away from the strip and beach ( 10 min walk ) . however .. do not go out alone
at night at all ! [...] plenty of laughs and everything is very cheap ! beer - 1euro !
fryups - 2euro . would go back again , but maybe stay somewhere else closer to the
beach ( sol pelicanos etc ) .. this hotel is next to an alley called ’ muggers alley ’

Multi-Aspect Sparse-Attentions
stayed at the parasio 10 apartments early april 2011 . reception sta↵ absolutely
fantastic , great customer service .. ca nt fault at all ! we were on the 4th floor ,
facing the front of the hotel .. basic , but nice and clean . good location , not too
far away from the strip and beach ( 10 min walk ) . however .. do not go out alone
at night at all ! [...] plenty of laughs and everything is very cheap ! beer - 1euro !
fryups - 2euro . would go back again , but maybe stay somewhere else closer to the
beach ( sol pelicanos etc ) .. this hotel is next to an alley called ’ muggers alley ’

Figure 3: Induced rationales on a truncated hotel review,
where shade colors represent the model confidence towards
the aspects. MTM finds most of the crucial spans of words
with a small amount of noise. SAM lacks coverage but identi-
fies words where half are correct and the others ambiguous
(represented with colored underlines).

that the linear model NB-SVM cannot capture the correlated
relationships between aspects, unlike the non-linear (neural)
models that have a higher capacity. The shared attention mod-
els perform better than BASE but provide only coarse-grained
interpretability. SAM is outperformed by all the models ex-
cept SENT, BASE, and NB-SVM.

Model Robustness - Hotel Reviews. We check the robust-
ness of our model on another domain. Table 4 (bottom)
presents the results of the Hotel dataset. The contextualized
variant MTMC outperforms all other models significantly
with a macro F1 score improvement of 0.49. Moreover, it
achieves the best individual F1 score for each aspect Ai. This
shows that the learned mask M of MTM is again meaningful
because it increases the performance and adds interpretability
to BASE. Regarding MTM, we see that it performs slightly
worse than the aspect-wise attention models MASA and MAA
but has 2.5 times fewer parameters.

A visualization of a truncated hotel review with the ex-
tracted rationales and attentions is available in Figure 3. Not
only do probabilistic masks enable higher performance, they
better capture parts of reviews related to each aspect com-
pared to other methods. More samples of beer and hotel
reviews can be found in Appendix A.3.

To summarize, we have shown that the regularizers in



F1 Scores

Be
er

Re
vi

ew
s

Interp. Model Params Macro A1 A2 A3 A4

None
SENT Sentiment Majority 560k 73.01 71.83 75.65 71.26 73.31
BASE Emb200 + EncCNN + Clf 188k 76.45 71.44 78.64 74.88 80.83

Coarse-
grained SAA Emb200 + EncCNN + AShared + Clf 226k 77.06 73.44 78.68 75.79 80.32

Emb200 + EncLSTM + AShared + Clf 219k 78.03 74.25 79.53 75.76 82.57

Fine-
grained

NB-SVM (Wang and Manning 2012) 4 · 560k 72.11 72.03 74.95 68.11 73.35
SAM (Lei, Barzilay, and Jaakkola 2016) 4 · 644k 76.62 72.93 77.94 75.70 79.91
MASA Emb200 + EncLSTM + ASparse

Aspect-wise + Clf 611k 77.62 72.75 79.62 75.81 82.28
MAA Emb200 + EncLSTM + AAspect-wise + Clf 611k 78.50 74.58 79.84 77.06 82.53

MTM Emb200 + Masker + EncCNN + Clf (Ours) 289k 78.55 74.87 79.93 77.39 82.02
MTMC Emb200+4 + EncCNN + Clf (Ours) 191k 78.94 75.02 80.17 77.86 82.71

F1 Scores

H
ot

el
Re

vi
ew

s

Interp. Model Params Macro A1 A2 A3 A4 A5

None
SENT Sentiment Majority 309k 85.91 89.98 90.70 92.12 65.09 91.67
BASE Emb300 + EncCNN + Clf 263k 90.30 92.91 93.55 94.12 76.65 94.29

Coarse-
grained SAA Emb300 + EncCNN + AShared + Clf 301k 90.12 92.73 93.55 93.76 76.40 94.17

Emb300 + EncLSTM + AShared + Clf 270k 88.22 91.13 92.19 93.33 71.40 93.06

Fine-
grained

NB-SVM (Wang and Manning 2012) 5 · 309k 87.17 90.04 90.77 92.30 71.27 91.46
SAM (Lei, Barzilay, and Jaakkola 2016) 5 · 824k 87.52 91.48 91.45 92.04 70.80 91.85
MASA Emb200 + EncLSTM + ASparse

Aspect-wise + Clf 1010k 90.23 93.11 93.32 93.58 77.21 93.92
MAA Emb300 + EncLSTM + AAspect-wise + Clf 1010k 90.21 92.84 93.34 93.78 76.87 94.21

MTM Emb300 + Masker + EncCNN + Clf (Ours) 404k 89.94 92.84 92.95 93.91 76.27 93.71
MTMC Emb300+5 + EncCNN + Clf (Ours) 267k 90.79 93.38 93.82 94.55 77.47 94.71

Table 4: Performance of the multi-aspect sentiment classification task for the Beer (top) and Hotel (bottom) datasets.

MTM guide the model to produce high-quality masks as ex-
planations while performing slightly better than the strong
attention models in terms of prediction performance. How-
ever, we demonstrated that including the inferred masks into
word embeddings and training a simpler model achieved the
best performance across two datasets and and at the same
time, brought fine-grained interpretability. Finally, MTM sup-
ported high correlation among multiple target variables.

Hard Mask versus Soft Masks. SAM is the neural model
that obtained the lowest relative macro F1 score in the two
datasets compared with MTMC: a difference of �2.32 and
�3.27 for the Beer and Hotel datasets, respectively. Both
datasets have a high average correlation between the aspect
ratings: 71.8% and 63.0%, respectively (see Table 1). There-
fore, it makes it challenging for rationale models to learn
the justifications of the aspect ratings directly. Following the
observations of (Lei, Barzilay, and Jaakkola 2016; Chang
et al. 2019, 2020), this highlights that single-target rationale
models suffer from high correlations and require data to sat-
isfy certain constraints, such as low correlations. In contrast,
MTM does not require any particular assumption on the data.

We compare MTM in a setting where the aspect ratings
were less correlated, although it does not reflect the real
distribution of the aspect ratings. We employ the decorrelated
subsets of the Beer reviews from (Lei, Barzilay, and Jaakkola
2016; Chang et al. 2020). It has an average correlation of
27.2% and the aspect Taste is removed.

We find similar trends but stronger results: MTM signif-
icantly generates better rationales and achieves higher F1
scores than SAM and the attention models. The contextual-
ized variant MTMC further improves the performance. The
full results and visualizations are available in Appendix A.2.

6 Conclusion
Providing explanations for automated predictions carries
much more impact, increases transparency, and might even
be necessary. Past work has proposed using attention mech-
anisms or rationale methods to explain the prediction of a
target variable. The former produce noisy explanations, while
the latter do not properly capture the multi-faceted nature
of useful rationales. Because of the non-probabilistic assign-
ment of words as justifications, rationale methods are prone
to suffer from ambiguities and spurious correlations and thus,
rely on unrealistic assumptions about the data.

The Multi-Target Masker (MTM) addresses these draw-
backs by replacing the binary mask with a probabilistic multi-
dimensional mask (one dimension per target), learned in an
unsupervised and multi-task learning manner, while jointly
predicting all the target variables.

According to comparison with human annotations and au-
tomatic evaluation on two real-world datasets, the inferred
masks were more accurate and coherent than those that were
produced by the state-of-the-art methods. It is the first tech-
nique that delivers both the best explanations and highest
accuracy for multiple targets simultaneously.
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