US 20240320249A1

a2y Patent Application Publication o) Pub. No.: US 2024/0320249 A1

a9y United States

Fusco et al.

(54) DETERMINING SPECIFICITY OF TEXT
TERMS IN APPLICATION CONTEXTS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Francesco Fusco, Zurich (CH); Diego
Matteo Antognini, Ruvigliana (CH)

(21) Appl. No.: 18/187,862

(22) Filed: Mar. 22, 2023

Publication Classification

Int. CL.
GO6F 16/33
GO6F 40/284
GO6F 40/30

(51)
(2006.01)
(2006.01)
(2006.01)

43) Pub. Date: Sep. 26, 2024
(52) US. CL
CPC .. GOGF 16/3346 (2019.01); GOGF 40/284
(2020.01); GO6F 40/30 (2020.01)
(57) ABSTRACT

A computer implemented method, a computer program
product and a computer system and are provided to enrich
downstream learning tasks. A processor stores selected text
terms from a corpus of text. A processor determines an initial
set of specificity scores for the selected text terms to produce
a set of training samples, where each of the training samples
comprise a selected text term and an initial specificity score
for the selected text term. A processor trains a character-
based regression model with the set of training samples. A
processor retrieves an Automated Term Extraction (ATE)
training data set. A processor determines specificity scores
for text terms included in the ATE training data set. A
processor, responsive to respective specificity score for a
text term in the ATE training data set being below a
threshold value, masks the text term from being used in the
ATE training data set.

20
4
control logic 22
23 25 27 28
o traming flinference
s module §§ module text onlication
fext corpus generator T T PTOCESSOr dp?t 103 on
- ext
S
CBR model 22
system memory 21
— - predicied
training model specificity
samples parameters SCOTes
HURAE T3 St

Patent Application Publication Sep. 26, 2024 Sheet 1 of 10 US 2024/0320249 A1

100
-
COMPUTER 101
PROCESSOR SET 110
PROCESSING CIRCUITRY 120 CACHE 121
COMMUNICATION FABRIC 114
VOLATILE MEMORY 112
PERSISTENT STORAGE 113
OPERATING SYSTEM 122
TEXT PROCESSOR 28
TRAINING MODULE 26
INFERENCE MODULE 27
PERIPHERAL DEVICE SET 114
Ul DEVICE SET 123 STORAGE 124 loT SENSOR SET 125
o NETWORK MODULE 115

\ END USER DEVICE 103
/ REMOTE SERVER 104
/ P \“

REMOTE DATABASE 130

PRIVATE CLOUD 106

— GATEWAY 140
PUBLIC CLOUD 108
CLOUD ORCHESTRATION MODULE 141 HOST PHYSICAL MACHINE SET 142
VIRTUAL MACHINE SET 143 CONTAINER SET 144

FIG. 1

Patent Application Publication Sep. 26, 2024 Sheet 2 of 10 US 2024/0320249 A1

24
"4
control logic 22
23 26 27 28
o training {linference
TDS module § module text splication
text corpus generator I T PrOCEsSor appiicatio
3 text
{CBR model ==
A
\ 4
sysiem memory 21
’1‘
3 32
— predicted
fraining model specificity
samples parameters scores
{(‘tie S;,'s)} {(T]’ S]’)}
determine
speciitcity
\ 4
I el
store set of training ,
: ac I(f. o} N
samples {1, 8;,)] input T:to model as M 43
character string to
train character-based 4 ob‘gam. ?redmted’
) specificity score S;
regression model on L
{{iy, 55} & store y
model parameters store predicted a4
\J/ scores {7, 8.,))
receive further o
text terms {7} from A _
. LT IR P J~43
application text process application
l text based on{{T, S},)}
y
end

FIG. 3

Patent Application Publication

Training Architecture

text term f; paracetamol
A
P oa 1
50 o -..1..'::2'::'4‘:::':-4_-.:
text M character tokenization 32!
encodery 1
H ‘ ; ; i
i character-level 33}
! embedding layer !
N S :
! 11 character
ey €q ey y I embedding
: i vectors
i
T T cevremoomoen i
i i
H dropout layer 36|}
IR ¥
§ dp da ------------------------ dl i
I i :
I bidirectional RNN 34}
i i
R 3
1Ry Ry oo nog
: L g X :
| I dropout layer 57 |=
it i
” max pooling 35 I:
| Bgepeapanpopeuopuaguspac .1 __________ i
h train
5 I,W _________ e . weights
i leaky ReLU S8y
dense layer| dropouli layer OIL—
(x 2) : 1‘7 —]
! linear layer 3914
LTTITTITIITE]. '
predicted
speciticity score 8,0 (.18
61
nitial loss
Intaai=— calculator
specificity score 5;

FIG. 4A

Sep. 26,2024 Sheet 3 of 10

{(x2)

Inference Architecture

text termn T?

character tokenization 32
‘ ; ;
character-level 33
embedding layer

US 2024/0320249 A1l

bidirectional RNN 34
[——— 17,

I max pooling 55 l
eepergusperprapeopepengen r
h
[P : Sttt
:l leaky RelU 38

I i
E[tinear layer 60}

predicted
specificity score r

FIG. 4B

Patent Application Publication

text corpus

Sep. 26, 2024 Sheet 4 of 10

US 2024/0320249 A1l

63
control logic 22
23 i P f2_7 28 ATE training
aall | raining finference e
ATE module module || module text dataset
= I Processor modify }
3, caleulator =2 CBR model 22 dataset
system memory 21
selected 66 mode] 2L
text terms A parameters
iraiming
r,mbeddmg, samples ranked 6
matrix {800 ’i(l}* Sj’)}
specificity
DEOCERSING
select text terms from P70
corpus via ATE
caleulate s; from text M 71 input 7 to model as PN
fragments containing charag ter string to
selected terms using obtain predicted
embedding matrix specificity score S
\LN _ 72 \I’ 7
store set of frauyng ol swre {7 s 5 N 76
samples {(¢;, 551 rariked by speuhuty
- — v
train ch'al a,ctepbzii&,d ofl process ATE samples M7/
reg,res%mn model on based on ranking to
4, 53} & store produce moodified
modal parameters training dataset
v 74 . 4
select 7" from ATE end
iy &mmg samples
|

FIG. 6

Patent Application Publication

Sep. 26,2024 Sheet 5 of 10

Generated Training samples

#rerm

machine_learning
information_retrieval
riformation_retrieva

reaching learning
reaching lsarning
deep lemarning

machine_learning
information_retrisval
information_retrisval
duep learning
deep_learning

LerR

4.2481

3.3223
3,150%
01447
0.3072
11,4355

FIG.

7

Ranking of Predicted Speeificity Scores for Generalized Domain

Top 10 MWE

Specificity Scove

S SQUIpITTIent Ls«zii’mw
momorphism_closed xzsismixzmﬂ
seatadditive_eategory
araded_category
,§;x3§.§m&.§§}}wmi;:gm}f
monoidal_closed _category

Bhge skbmed hunumoid

top _pactonal_caten
homapantothenic
fransmEL_feosive maaiig

QIA3BIA22REI4Y
0327 26900R5242191
3MITRNRTAS 3{3*1}':‘4
11.3260855071833317
{LA234852781 ?:'4@643
(A22261613315831245
3.3213531005350276062
{z ﬁ:ei»i{i%"

531065431 \3;{}%%49

Battam 10 MWE

specticily Seom

small_role
newropat
new_creatige
estimated thne
WU
aypostant_roke
cructal_role
oW ;mfi
W dea
SPOG |

SLOUTHIARZANT7RT RS
SLOORTIRTIRIT2 1538462
SLOOUS99 1354406936013
OB IRT 2207269116
SO0 3INTEATES
ALOT3383380932456027
vf} f} f ?‘"} i {“3{}"%”’? i 3?9 333

L0349242 377961 G476

FIG.

8

US 2024/0320249 A1l

Patent Application Publication Sep. 26, 2024 Sheet 6 of 10

ATE Training Samples

e

in computer sclence and information theory,
& Huffman code is o particular type of
optimal prefix code that s commondy used
for lossless dats compression,

From 2004 to 2008, new research emerged on
ways 1o further compress the data contained in
frages without modifying the image.

IPEG is 2 commanly used method of lossy
compression for digital images, particularly for
those images produced by digital photography.

aax

US 2024/0320249 A1l

FIG. S

Training Sample

in computer science and information theory,
a Huffman code is 3 particul
optimal prefix code that is commonly used
for lossless data compression,

Curated Sample

&

b

in computer science and information theory,
a Huffman code i 3 particular type of
optimal prefix code that s commonly used
for lossless data compreassion.

FIG. 10

Patent Application Publication Sep. 26, 2024 Sheet 7 of 10 US 2024/0320249 A1

belongs-to

information
theory

thmal
nretix code
is-a

knowledge base

context fragments
« 4 Huffroan code s s particular

type of optimal prefix code tha Huffman code is widely wed as
is commonly used for lossless 3 synonym for prefix code,

data compression.

A d v

Huffman code, 1.4 Huffman code, 6.4

FIG. 11A

Patent Application Publication Sep. 26, 2024 Sheet 8 of 10 US 2024/0320249 A1

lossless
data compression

knowledge graph

b
<

large
corpus

context fragments
.. & Huffman code i & particular

type of optimal prefix code that Huffman code b5 widely used as
is comrmnndy used for lossless & synorym for peefix code,

data compression.

L 2 ¥

Huffman code, 4.3 Huffman code, 5

FIG. 118

Patent Application Publication Sep. 26, 2024 Sheet 9 of 10 US 2024/0320249 A1

knowledge
induction

%3
store cloud data 0
v \
o . 86 88
rank text terms generate KG for ol
by specificity S; filtered data
v 0 ¥
. vt 3
filter cloud data recerve search query 89
by specificity J/
pymn WAt
extract data from KG
end
FIG. 12
keyword
expansion
— . 1.r98
store embedding matrix
Y
96
rank text terms d
by specificity §;
A \L 97
mput keyword Y

search embedding [~98
for most-specific
neighbors

A 4
store expanded ~09
keyword set

FiG. 13

Patent Application Publication Sep. 26, 2024 Sheet 10 of 10 US 2024/0320249 A1l

phrase
exiraction

|~ 100
process text o generate
graph for phrases
A
| ~101

rank text terms in
phrases by specificity §,

prune graph into |~ 102
subgraph with
most-specific phrases

v
process subgraph to
gxiract phrases

|~ 133

end

FIG. 14

search

W
rank text terms in
database by specificity

v

recetve search query

|~ 105

\ 4
identify ranked elements
in search query

Y

generate response based
on specificity scores

|~ 108

\
end

FIG. 15

US 2024/0320249 Al

DETERMINING SPECIFICITY OF TEXT
TERMS IN APPLICATION CONTEXTS

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to deter-
mining specificity of text terms for use in text processing
applications. Computer-implemented methods are provided
for determining specificity of text terms, together with
systems, computer program products and text processing
applications implementing such methods.

[0002] The specificity of a text term, such as singular
words or multiword expressions, is a measure of the quantity
of information contained in that term. When a text term
contains a lot of information in a given domain, that term is
highly specific to the domain, and vice versa. Capturing the
specificity of text terms can be extremely valuable for
numerous processing applications relating to information
retrieval, learning and knowledge discovery. In our modern
world, huge quantities of data are being generated at ever
increasing rates. Text documents such as research papers,
scientific journals, news reports, etc., provide vast reposito-
ries of information covering a diverse spectrum of domains.
Processing such text to allow this information to be identi-
fied, extracted and ultimately made useful presents an enor-
mous challenge. The ability to process text terms based on
specificity of the concepts they represent can be invaluable
in this and other technical applications.

SUMMARY

[0003] Embodiments of the present invention provide a
method, system, and program product to enrich downstream
learning tasks. A processor stores selected text terms from a
corpus of text. A processor determines an initial set of
specificity scores for the selected text terms to produce a set
of training samples, where each of the training samples
comprise a selected text term and an initial specificity score
for the selected text term. A processor trains a character-
based regression model with the set of training samples. A
processor retrieves an Automated Term Extraction (ATE)
training data set. A processor determines specificity scores
for text terms included in the ATE training data set. A
processor, responsive to respective specificity score for a
text term in the ATE training data set being below a
threshold value, masks the text term from being used in the
ATE training data set.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0004] FIG.1is a schematic representation of a computing
system for implementing methods embodying the invention;
[0005] FIG. 2 illustrates component modules of a first
computing system for determining specificity of text terms;
[0006] FIG. 3 indicates steps of a method performed by
the FIG. 2 system;

[0007] FIGS. 4a and 4b illustrate training and inference
architectures for a character-based regression model in the
FIG. 2 system;

[0008] FIG. 5 illustrates component modules of a second
computing for determining specificity of text terms;
[0009] FIG. 6 indicates steps of a method performed by
the FIG. 5 system;

[0010] FIGS. 7 and 8 illustrate results of steps of the FIG.
6 method in an exemplary implementation;

Sep. 26, 2024

[0011] FIGS. 9 and 10 illustrate application of the FIG. 6
method for curating training datasets for Automated Term
Extraction systems;

[0012] FIGS. 11a and 115 illustrate modifications to the
FIG. 5 system; and

[0013] FIGS. 12 through 15 indicate operational steps of
further text processing applications using methods embody-
ing the invention.

DETAILED DESCRIPTION

[0014] Various aspects of the present disclosure are
described by narrative text, flowcharts, block diagrams of
computer systems and/or block diagrams of the machine
logic included in computer program product (CPP) embodi-
ments. With respect to any flowcharts, depending upon the
technology involved, the operations can be performed in a
different order than what is shown in a given flowchart. For
example, again depending upon the technology involved,
two operations shown in successive flowchart blocks may be
performed in reverse order, as a single integrated step,
concurrently, or in a manner at least partially overlapping in
time.

[0015] A computer program product embodiment (“CPP
embodiment” or “CPP”) is a term used in the present
disclosure to describe any set of one, or more, storage media
(also called “mediums”) collectively included in a set of one,
or more, storage devices that collectively include machine
readable code corresponding to instructions and/or data for
performing computer operations specified in a given CPP
claim. A “storage device” is any tangible device that can
retain and store instructions for use by a computer processor.
Without limitation, the computer readable storage medium
may be an electronic storage medium, a magnetic storage
medium, an optical storage medium, an electromagnetic
storage medium, a semiconductor storage medium, a
mechanical storage medium, or any suitable combination of
the foregoing. Some known types of storage devices that
include these mediums include: diskette, hard disk, random
access memory (RAM), read-only memory (ROM), erasable
programmable read-only memory (EPROM or Flash
memory), static random access memory (SRAM), compact
disc read-only memory (CD-ROM), digital versatile disk
(DVD), memory stick, floppy disk, mechanically encoded
device (such as punch cards or pits/lands formed in a major
surface of a disc) or any suitable combination of the fore-
going. A computer readable storage medium, as that term is
used in the present disclosure, is not to be construed as
storage in the form of transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide,
light pulses passing through a fiber optic cable, electrical
signals communicated through a wire, and/or other trans-
mission media. As will be understood by those of skill in the
art, data is typically moved at some occasional points in time
during normal operations of a storage device, such as during
access, de-fragmentation or garbage collection, but this does
not render the storage device as transitory because the data
is not transitory while it is stored.

[0016] Computing environment 100 contains an example
of an environment for the execution of at least some of the
computer code involved in performing the inventive meth-
ods, such as text processor 28, training module 26 and
inference module 27, computing environment 100 includes,
for example, computer 101, wide area network (WAN) 102,

US 2024/0320249 Al

end user device (EUD) 103, remote server 104, public cloud
105, and private cloud 106. In this embodiment, computer
101 includes processor set 110 (including processing cir-
cuitry 120 and cache 121), communication fabric 111,
volatile memory 112, persistent storage 113 (including oper-
ating system 122 and block 200, as identified above),
peripheral device set 114 (including user interface (UI)
device set 123, storage 124, and Internet of Things (IoT)
sensor set 125), and network module 115. Remote server
104 includes remote database 130. Public cloud 105
includes gateway 140, cloud orchestration module 141, host
physical machine set 142, virtual machine set 143, and
container set 144.

[0017] COMPUTER 101 may take the form of a desktop
computer, laptop computer, tablet computer, smart phone,
smart watch or other wearable computer, mainframe com-
puter, quantum computer or any other form of computer or
mobile device now known or to be developed in the future
that is capable of running a program, accessing a network or
querying a database, such as remote database 130. As is well
understood in the art of computer technology, and depending
upon the technology, performance of a computer-imple-
mented method may be distributed among multiple comput-
ers and/or between multiple locations. On the other hand, in
this presentation of computing environment 100, detailed
discussion is focused on a single computer, specifically
computer 101, to keep the presentation as simple as possible.
Computer 101 may be located in a cloud, even though it is
not shown in a cloud in FIG. 1. On the other hand, computer
101 is not required to be in a cloud except to any extent as
may be affirmatively indicated.

[0018] PROCESSOR SET 110 includes one, or more,
computer processors of any type now known or to be
developed in the future. Processing circuitry 120 may be
distributed over multiple packages, for example, multiple,
coordinated integrated circuit chips. Processing circuitry
120 may implement multiple processor threads and/or mul-
tiple processor cores. Cache 121 is memory that is located
in the processor chip package(s) and is typically used for
data or code that should be available for rapid access by the
threads or cores running on processor set 110. Cache memo-
ries are typically organized into multiple levels depending
upon relative proximity to the processing circuitry. Alterna-
tively, some, or all, of the cache for the processor set may be
located “off chip.” In some computing environments, pro-
cessor set 110 may be designed for working with qubits and
performing quantum computing.

[0019] Computer readable program instructions are typi-
cally loaded onto computer 101 to cause a series of opera-
tional steps to be performed by processor set 110 of com-
puter 101 and thereby effect a computer-implemented
method, such that the instructions thus executed will instan-
tiate the methods specified in flowcharts and/or narrative
descriptions of computer-implemented methods included in
this document (collectively referred to as “the inventive
methods™). These computer readable program instructions
are stored in various types of computer readable storage
media, such as cache 121 and the other storage media
discussed below. The program instructions, and associated
data, are accessed by processor set 110 to control and direct
performance of the inventive methods. In computing envi-
ronment 100, at least some of the instructions for performing

Sep. 26, 2024

the inventive methods (i.e., text processor 28, training
module 26 and inference module 27) may be stored in
persistent storage 113.

[0020] COMMUNICATION FABRIC 111 is the signal
conduction path that allows the various components of
computer 101 to communicate with each other. Typically,
this fabric is made of switches and electrically conductive
paths, such as the switches and electrically conductive paths
that make up busses, bridges, physical input/output ports and
the like. Other types of signal communication paths may be
used, such as fiber optic communication paths and/or wire-
less communication paths.

[0021] VOLATILE MEMORY 112 is any type of volatile
memory now known or to be developed in the future.
Examples include dynamic type random access memory
(RAM) or static type RAM. Typically, volatile memory 112
is characterized by random access, but this is not required
unless affirmatively indicated. In computer 101, the volatile
memory 112 is located in a single package and is internal to
computer 101, but, alternatively or additionally, the volatile
memory may be distributed over multiple packages and/or
located externally with respect to computer 101.

[0022] PERSISTENT STORAGE 113 is any form of non-
volatile storage for computers that is now known or to be
developed in the future. The non-volatility of this storage
means that the stored data is maintained regardless of
whether power is being supplied to computer 101 and/or
directly to persistent storage 113. Persistent storage 113 may
be a read only memory (ROM), but typically at least a
portion of the persistent storage allows writing of data,
deletion of data and re-writing of data. Some familiar forms
of persistent storage include magnetic disks and solid-state
storage devices. Operating system 122 may take several
forms, such as various known proprietary operating systems
or open source Portable Operating System Interface-type
operating systems that employ a kernel. The code included
in block 200 typically includes at least some of the computer
code involved in performing the inventive methods.

[0023] PERIPHERAL DEVICE SET 114 includes the set
of peripheral devices of computer 101. Data communication
connections between the peripheral devices and the other
components of computer 101 may be implemented in vari-
ous ways, such as Bluetooth connections, Near-Field Com-
munication (NFC) connections, connections made by cables
(such as universal serial bus (USB) type cables), insertion-
type connections (for example, secure digital (SD) card),
connections made through local area communication net-
works and even connections made through wide area net-
works such as the internet. In various embodiments, Ul
device set 123 may include components such as a display
screen, speaker, microphone, wearable devices (such as
goggles and smart watches), keyboard, mouse, printer,
touchpad, game controllers, and haptic devices. Storage 124
is external storage, such as an external hard drive, or
insertable storage, such as an SD card. Storage 124 may be
persistent and/or volatile. In some embodiments, storage 124
may take the form of a quantum computing storage device
for storing data in the form of qubits. In embodiments where
computer 101 is required to have a large amount of storage
(for example, where computer 101 locally stores and man-
ages a large database) then this storage may be provided by
peripheral storage devices designed for storing very large
amounts of data, such as a storage area network (SAN) that
is shared by multiple, geographically distributed computers.

US 2024/0320249 Al

IoT sensor set 125 is made up of sensors that can be used in
Internet of Things applications. For example, one sensor
may be a thermometer and another sensor may be a motion
detector.

[0024] NETWORK MODULE 115 is the collection of
computer software, hardware, and firmware that allows
computer 101 to communicate with other computers through
WAN 102. Network module 115 may include hardware,
such as modems or Wi-Fi signal transceivers, software for
packetizing and/or de-packetizing data for communication
network transmission, and/or web browser software for
communicating data over the internet. In some embodi-
ments, network control functions and network forwarding
functions of network module 115 are performed on the same
physical hardware device. In other embodiments (for
example, embodiments that utilize software-defined net-
working (SDN)), the control functions and the forwarding
functions of network module 115 are performed on physi-
cally separate devices, such that the control functions man-
age several different network hardware devices. Computer
readable program instructions for performing the inventive
methods can typically be downloaded to computer 101 from
an external computer or external storage device through a
network adapter card or network interface included in net-
work module 115.

[0025] WAN 102 is any wide area network (for example,
the internet) capable of communicating computer data over
non-local distances by any technology for communicating
computer data, now known or to be developed in the future.
In some embodiments, the WAN 102 may be replaced and/or
supplemented by local area networks (LANs) designed to
communicate data between devices located in a local area,
such as a Wi-Fi network. The WAN and/or LANs typically
include computer hardware such as copper transmission
cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and edge
servers.

[0026] END USER DEVICE (EUD) 103 is any computer
system that is used and controlled by an end user (for
example, a customer of an enterprise that operates computer
101), and may take any of the forms discussed above in
connection with computer 101. EUD 103 typically receives
helpful and useful data from the operations of computer 101.
For example, in a hypothetical case where computer 101 is
designed to provide a recommendation to an end user, this
recommendation would typically be communicated from
network module 115 of computer 101 through WAN 102 to
EUD 103. In this way, EUD 103 can display, or otherwise
present, the recommendation to an end user. In some
embodiments, EUD 103 may be a client device, such as thin
client, heavy client, mainframe computer, desktop computer
and so on.

[0027] REMOTE SERVER 104 is any computer system
that serves at least some data and/or functionality to com-
puter 101. Remote server 104 may be controlled and used by
the same entity that operates computer 101. Remote server
104 represents the machine(s) that collect and store helpful
and useful data for use by other computers, such as computer
101. For example, in a hypothetical case where computer
101 is designed and programmed to provide a recommen-
dation based on historical data, then this historical data may
be provided to computer 101 from remote database 130 of
remote server 104.

Sep. 26, 2024

[0028] PUBLIC CLOUD 105 is any computer system
available for use by multiple entities that provides on-
demand availability of computer system resources and/or
other computer capabilities, especially data storage (cloud
storage) and computing power, without direct active man-
agement by the user. Cloud computing typically leverages
sharing of resources to achieve coherence and economics of
scale. The direct and active management of the computing
resources of public cloud 105 is performed by the computer
hardware and/or software of cloud orchestration module
141. The computing resources provided by public cloud 105
are typically implemented by virtual computing environ-
ments that run on various computers making up the com-
puters of host physical machine set 142, which is the
universe of physical computers in and/or available to public
cloud 105. The virtual computing environments (VCEs)
typically take the form of virtual machines from virtual
machine set 143 and/or containers from container set 144. It
is understood that these VCEs may be stored as images and
may be transferred among and between the various physical
machine hosts, either as images or after instantiation of the
VCE. Cloud orchestration module 141 manages the transfer
and storage of images, deploys new instantiations of VCEs
and manages active instantiations of VCE deployments.
Gateway 140 is the collection of computer software, hard-
ware, and firmware that allows public cloud 105 to com-
municate through WAN 102.

[0029] Some further explanation of virtualized computing
environments (VCEs) will now be provided. VCEs can be
stored as “images.” A new active instance of the VCE can be
instantiated from the image. Two familiar types of VCEs are
virtual machines and containers. A container is a VCE that
uses operating-system-level virtualization. This refers to an
operating system feature in which the kernel allows the
existence of multiple isolated user-space instances, called
containers. These isolated user-space instances typically
behave as real computers from the point of view of programs
running in them. A computer program running on an ordi-
nary operating system can utilize all resources of that
computer, such as connected devices, files and folders,
network shares, CPU power, and quantifiable hardware
capabilities. However, programs running inside a container
can only use the contents of the container and devices
assigned to the container, a feature which is known as
containerization.

[0030] PRIVATE CLOUD 106 is similar to public cloud
105, except that the computing resources are only available
for use by a single enterprise. While private cloud 106 is
depicted as being in communication with WAN 102, in other
embodiments a private cloud may be disconnected from the
internet entirely and only accessible through a local/private
network. A hybrid cloud is a composition of multiple clouds
of different types (for example, private, community or public
cloud types), often respectively implemented by different
vendors. Each of the multiple clouds remains a separate and
discrete entity, but the larger hybrid cloud architecture is
bound together by standardized or proprietary technology
that enables orchestration, management, and/or data/appli-
cation portability between the multiple constituent clouds. In
this embodiment, public cloud 105 and private cloud 106 are
both part of a larger hybrid cloud

[0031] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer

US 2024/0320249 Al

program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0032] These computer readable program instructions may
be provided to a processor of a computer, or other program-
mable data processing apparatus to produce a machine, such
that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0033] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0034] The flowchart and block diagrams in the FIGs.
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the FIGs. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, in a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0035] The FIG. 2 schematic illustrates component mod-
ules of a first computing system embodying the invention.
The system 20 comprises memory 21 and control logic,
indicated generally at 22, comprising functionality for deter-
mining specificity of text terms. The control logic 22 com-
prises a training dataset (TDS) generator 23 which obtains
selected text terms from a corpus of text 24, and a character-
based regression (CBR) model 25 with associated training
and inference modules 26 and 27. The control logic 22
further comprises a text processor module 28 which receives
further text terms from an application text-set 29 to be

Sep. 26, 2024

processed. Logic modules 23 through 28 interface with
memory 21 which stores various data structures used in
operation of system 20. These data structures include a
dataset of training samples 30 for training of CBR model 25,
the model parameters 31 for the trained CBR model, and a
set 32 of predicted specificity scores for further text terms to
which the CBR model is applied for inference.

[0036] In general, functionality of logic modules 23
through 28 may be implemented by software (e.g., program
modules) or hardware or a combination thereof. Function-
ality described may be allocated differently between system
modules in other embodiments, and functionality of one or
more modules may be combined. The component modules
of computing system 20 may be provided in one or more
computers of a computing system. For example, all modules
may be provided in a user computer 1, or modules may be
provided in one or more computers/servers which commu-
nicate via a network (comprising one or more component
networks and/or internetworks, including the Internet). Sys-
tem memory 21 may be implemented by one or memory/
storage components associated with one or more computers
of system 20.

[0037] FIG. 3 indicates basic steps of a method for deter-
mining specificity of text terms as implemented by system
20. Step 40 represents storage by TDS generator 23 of the
training dataset 30 in system memory 21. This training
dataset comprises a set of N training samples, denoted by
{(t,, s}, i=1 to N, each comprising a selected text term t,
contained in text corpus 24 and an initial specificity score s;
for that term. A text term t, may be a single word or a
multiword expression. Multiword expressions (MWEs) are
sequences of two or more words, such as “machine learning”
or “information retrieval”, which act as a single unit because
they are semantically or syntactically related. The text terms
t; may be selected from text corpus 24 using various
techniques described below. The initial specificity scores s,
for text terms can be calculated using text corpus 24, again
using various techniques, as described further below.
[0038] In step 41, the training samples {(t,, s,)} are sup-
plied to training module 26 which uses the samples to train
CBR model 25 to output a predicted specificity score for a
text term which is input to the model as a character string.
The architecture and operation of CBR model 25 is
described further below. The parameters of the trained
model are then stored at 31 in system memory 21. After
training the CBR model, in step 42 the text processor 28
receives further text terms, denoted by {T}, from the
application text-set 29 which is to be processed in depen-
dence on specificity of text terms contained therein. In step
43, the CBR model 25 is used to determine specificity of the
further terms {T,}. Here, each text term T, is supplied to
inference module 27 which inputs T, as a character string to
the model to obtain a predicted specificity score, denoted by
S,, for that term. As indicated at step 44, the resulting
predicted specificity scores {(T,, S)} are stored at 32 in
system memory. In this example, in step 45, the text pro-
cessor 28 then processes application text-set 29 in depen-
dence on the predicted specificity scores {(T), S)}. A variety
of processing operations may be performed here depending
on the application in question, and particular examples are
described below.

[0039] FIGS. 4a and 45 are schematic representations of
an exemplary implementation of CBR model 25. This model
comprises a series of neural network (NN) layers in which

US 2024/0320249 Al

weighted signals are processed and propagated from the
model input to the model output. FIG. 4a shows the model
architecture for the training operation (step 41 of FIG. 3).
The model comprises a text encoder 50 followed by two
successive dense layers 51 (only one of which is shown in
the FIG. 4a for simplicity). Text encoder 50 comprise a
character tokenization layer 52, a character-level embedding
layer 53, a bidirectional recurrent neural network (RNN) 54,
here based on gated recurrent units (GRUs), and a max
pooling layer 55. In this example, dropout layers 56 and 57
are included at the input and output respectively of RNN 54.
Each dense layer 51 comprises a leaky ReLU activation
layer 58 and a linear NN layer 59, here with an intervening
dropout layer 60.

[0040] During training, a text term t; from training dataset
30 is input to text encoder 50 as a character string. In this
example, as illustrated for the term “paracetamol”, succes-
sive characters of the character string comprise successive
letters of the text term. For a multiword expression such as
“machine_learning”, the space “_" is deemed a letter for this
purpose. The characters of the text term are input in parallel
to tokenization layer 52. (The number of character inputs to
tokenization layer 52 is determined based on the longest
character string in training dataset 30, with no input being
supplied to the “spare” character inputs for shorter strings t,).
Tokenization layer 52 encodes the input characters into
respective tokens. One-hot encoding is conveniently
employed here, though other encoding schemes can be
envisaged. The character tokens are input in parallel to
character embedding layer 53 which encodes each character
into a respective embedding vector, denoted here by e,
(where y denotes the corresponding character) of dimension
L. In this example, [=32. Dropout layer 56 operates in the
usual way for regularization, setting a small proportion of
randomly-selected values in each embedding vector to zero.
This makes the trained model better able to generalize, and
thus more robust. The modified embedding vectors, denoted
here by d,,, from dropout layer 56 are then input to bidirec-
tional RNN 54. This comprises two parallel RNN layers
each of which receives the input vectors d, in a different
order, one from first to last (i.e. d,, to d;) and the other from
last to first (d, to d,,). The resulting output vectors from these
layers, here of dimension M=256, are aggregated for each
character to obtain a set of output vectors h,, as indicated.
After further dropout layer 57, the resulting vectors are
aggregated in max pooling layer 55 to obtain a single vector
h of dimension M. The vector h is then propagated through
successive dense layers 51 which yield a single output value,
denoted by S, which represents a predicted specificity score
for the input term t,. The score S, is supplied, along with the
initial specificity score s, from the training sample (t,, s,) for
term t,, to a loss calculator 61 which evaluates a loss function
dependent on the difference between S, and s, to calculate
the network error (loss) for the current sample. Errors are
then backpropagated through the network and the model
parameters (NN weights) are then incrementally updated to
move towards a more optimal weight-set. The weight
updates can be calculated by a well-known gradient-descent
technique with an optional [.2-norm penalty.

[0041] The above training process iterates for successive
training samples in dataset 30 until a predefined conver-
gence condition is achieved. Convergence can be defined in
various ways, e.g., as the point at which the network loss

Sep. 26, 2024

cannot be reduced any further, and the particular conver-
gence condition is orthogonal to the operation described.
[0042] When applied for inference (step 43 of FIG. 3), the
model 25 operates with fixed weights as optimized by the
training process. The model architecture for inference is
shown in FIG. 4b. This corresponds to the FIG. 4a archi-
tecture with the dropout layers 56, 57 and 60 disabled (i.e.,
all vector elements are passed without dropouts). A new text
term T, is input as a character string as before, and the model
then outputs the predicted specificity score S, for that term.
[0043] It will be seen that, after training CBR model 25,
the model can be used to predict specificity scores for
arbitrary text terms based solely on character-level informa-
tion (morphology signals). The model can thus be applied to
previously unseen text and can generalize to arbitrary
domains. The trained CBR model provides a computation-
ally efficient system for computing specificity of text terms.
Specificity scores can be computed in milliseconds with
models that are less than a megabyte in size. Compared to
prior techniques for estimating specificity (such as tech-
niques discussed below for providing initial specificity
scores s,), this represents a huge saving in compute resources
and storage requirements. Prior techniques can be leveraged
to provide inputs for the model training process, but the
resulting character-based model then provides a robust
standalone system, which is computationally-lightweight
and has a small memory footprint, enabling specificity
scores to be generated for arbitrary text. This is extremely
valuable for numerous processing applications in term
extraction and knowledge discovery generally.

[0044] In general, the text corpus 24 containing text terms
t; may be local or remote from system 20. While indicated
as a single entity in FIG. 2, this text corpus may comprise
one or more text-sets of one or more types, including sets of
document such as research papers, abstracts, scientific
articles, news reports, etc., as well as text content of
webpages, knowledge bases, knowledge graphs and other
text data structures. Text terms can be selected from such
text-sets in various ways. For example, well-known Auto-
mated Term Extraction (ATE) techniques can be applied to
extract text terms from domain specific corpora. Multiword
expressions (MWEs) can be identified using any of a variety
of ATE systems known in the art. Alternatively, or in
addition, MWEs can be extracted in a semi-automated way
from terms associated with hyperlinks in knowledge bases
such as Wikipedia or captions of hyperlinks in other web
pages. Terms may also be extracted from pre-compiled
dictionaries of terms such as manually curated glossaries for
specific domains. The text terms t; can thus be selected from
a corpus 24 comprising various text-sets spanning a diverse
range of domains. In some embodiments of the present
invention, TDS generator 23 can select text terms t; via ATE
processing of text corpus 24, and can calculate the initial
specificity scores s; from the text corpus using automated
text processing techniques described below. In other
embodiments, TDS generator 23 may generate training
dataset 30 by compiling precomputed results for specificity
scores s, derived for terms t; from one or more text-sets using
any automated or semi-automated processing technique
known in the art.

[0045] FIG. 5 shows a more detailed system implementa-
tion according to some embodiments of the present inven-
tion. Components corresponding to those of FIG. 2 are
indicated by like reference numerals in this FIG. 5. In the

US 2024/0320249 Al

system 63 of this example, the TDS generator 23 comprises
an ATE module 64 and an initial specificity score calculator
65. Memory 21 stores a set 66 of text terms selected by ATE
module 64 from text corpus 24, and an embedding matrix 67
which is used by s; calculator 65 to calculate initial speci-
ficity scores for these text terms. The text processor 28 of
this example is adapted to process a training dataset 68 of
text samples for ATE model to produce a modified training
dataset. This processing operation exploits a ranked set 69 of
predicted specificity scores S, generated by CBR model 25,
for text terms T, in dataset 68.

[0046] Operation of system 63 is illustrated in FIG. 6. In
step 70, ATE module 64 processes text corpus 24 to select
a large set of text terms, including single words and MWEs,
which are stored as set 66 in system memory 21. In this
example, module 64 employs an ATE technique where, for
example, approximately 500,000 distinct terms were
extracted from about 1.7 million arXiv abstracts represented
in corpus 24. In step 71, the s, calculator 65 uses an
embedding-based technique to calculate initial specificity
scores for the selected text terms 66. This process uses
embedding matrix 67 which is precalculated using text
corpus 24. This embedding matrix can be generated using a
word embedding scheme. Word embedding schemes are
well-known, and essentially generate a mapping between
text terms and vectors of real numbers which define loca-
tions of respective terms in a multidimensional embedding
space. The relative locations of text terms in this space are
indicative of the degree of relationship between the text
terms, with terms which are “closer” in the embedding space
being more closely related than those which are further
apart. Given a large corpus of text 24, the text is pre-
processed such that multiword expressions are treated as
single words through concatenation (e.g., the consecutive
words “machine” and “learning” become the single text term
“machine_learning”). Once the corpus is preprocessed, any
desired word embedding scheme, such as the Word2vec,
Glove, or FastText algorithms, can be used to create the
embedding matrix. In this example, the embedding matrix
was generated via a Word2vec implementation using the
CBOW (Continuous Bag-Of-Words) algorithm.

[0047] The initial specificity scores are calculated in step
71 using text fragments in corpus 24 which contain instances
of the selected text terms 66. In particular, an initial speci-
ficity score is calculated for a selected text term in depen-
dence on distance in the word embedding space between the
selected text term and other text terms contained in a text
fragment (“context fragment”) which includes an instance of
the selected text term. The score is computed as an average
of the pairwise distances in the embedding space between
the selected term and all the other words/'MWEs within a
context fragment. The context fragment can be a window of
words around the selected term, or the sentence (or para-
graph) where the selected term appears. Common stop-
words (such as “the”, “in”, “a”, etc.), as well as numbers and
units, can be removed from the fragment before processing.
The remaining words/MWE constitute the set of all the
distinct terms within the context. The resulting initial speci-
ficity score s; is then calculated as the average distance in the
embedding space between the selected text term and each
remaining term in the context fragment, where distance can
be computed as the cosine similarity between the corre-
sponding pair of embedding vectors in embedding matrix

Sep. 26, 2024

67. Using cosine similarity here yields initial specificity
scores s, in the range —1=s,=+1.

[0048] The specificity scores calculated in step 71 yield a
set {(t;, s;,)} of term-score pairs which are stored in step 72
as training dataset 30. Note that, for selected text terms
which appear in more than one context fragment, a plurality
of initial specificity scores s, will be calculated for respective
instances of that term, producing a plurality of training
samples containing the same text term. In the exemplary
implementation mentioned above, approximately 10 million
training pairs (t,, s;) were generated for the selected terms 66
from the arXiv abstracts. An illustrative excerpt from the
resulting training data is shown in FIG. 7.

[0049] Step 73 of FIG. 5 represents training of CBR model
25 in the architecture of FIG. 4a. The resulting trained model
can then be applied for inference without requiring further
processing by ATE module 64 or specificity calculator 65.
For an implementation using arXiv abstracts, the resulting
trained model was tested for generalization to other
domains. The model was used to predict specificity scores
for MWEs extracted from Wikipedia hyperlinks. FIG. 8
shows the resulting scores for the ten highest- and lowest-
ranked terms ordered by predicted specificity score. A clear
difference can be observed between the top and bottom of
the specificity distribution. The bottom of the distribution
reflects irrelevant MWHEs, while the top represents highly
specific terms.

[0050] In step 74 of FIG. 6, the text processor 28 extracts
further text terms {T,} from annotated text samples in ATE
training dataset 68. Such samples are generally text frag-
ments, typically sentences, with terms expressed in I0B
(Inside, Outside, Beginning) format. In step 75, each text
term T, is input to CBR model 25 (FIG. 4 architecture) as
a character string to obtain a predicted specificity score S, for
that term. Text processor 28 ranks the terms T, by specificity
based on the predicted specificity scores S, and the resulting
ranked pairs {(T,, S))} are stored at 69 in memory 21. In
process 76, the resulting predicted specificity scores {(T,.
S,)} are stored at 32 in system memory and then ranked by
specificity. In step 77, text processor 28 then processes
training dataset 68 based on the specificity ranking {(T}, S,)}
to produce a modified training set with enhanced specificity.
FIG. 9 illustrates one example of this process. This shows
exemplary text samples as sentences in which the annotated
terms (i.e., words/MWE which are tagged as terms to be
identified by an ATE model) are indicated by bold type. Text
processor 28 used the specificity ranking 69 to filter sen-
tences from the training set to provide a modified training
dataset comprising a higher proportion of text terms higher
in the ranking. Samples can be filtered from the training set
with a probability which is higher for samples containing
terms lower in the ranking. For example, samples contain
only terms with less than a threshold specificity can be
removed from the dataset, e.g. the sample marked with a
cross in FIG. 9. The resulting modified dataset then contains
a higher proportion of samples containing more specific
terms, e.g. those marked with a checkmark in FIG. 9. This
sample selection operation produces a training dataset with
fewer training samples that are borderline, improving accu-
racy of the trained ATE system.

[0051] Another example of text processing step 77 is
illustrated in FIG. 10. Here, for each training sample con-
taining a number of tagged terms, text processor 28 may
“untag”, or mask, certain terms (i.e. mark those terms as

US 2024/0320249 Al

“non-terms”) as indicated schematically for the term “par-
ticular type” in FIG. 10. Terms can be untagged with a
probability which is higher for terms lower in the specificity
ranking. For example, tagged terms having less than a
threshold specificity score may be untagged. The final
modified training set then comprises a higher proportion of
tagged text terms higher in the specificity ranking. This term
masking operation produces a modified training dataset
which is biased for improved precision (rather than recall)
which is extremely important for knowledge discovery
tasks.

[0052] Curating ATE training sets as described above can
reduce training complexity for ATE models, reducing com-
pute resources required for the (computationally expensive)
training operation, allowing improved ATE models to be
obtained with smaller training sets.

[0053] It will be seen that system 63 can generate a
training dataset for CBR model 25 in a totally unsupervised
manner. Once the CBR model is trained, text corpus 24 and
embedding matrix 67 are no longer required, and the infer-
ence latency for computing specificity scores is extremely
low. Specificity scores can be predicted for terms which
have not been seen in the training data using only morphol-
ogy signals at the character level. The use of instance-based
initial specificity scores (as opposed to averaging these
scores for a given term) also enables model predictions to be
influenced by scores for terms which are morphologically
similar, improving the inference operation for unseen text.
[0054] While the embedding-based method for computing
initial specificity scores provides a particularly high-quality
specificity metric, various other methods might be used. For
example, an initial specificity score may be calculated based
on relationships, defined in a predetermined knowledge data
structure, between the selected term and other terms in a
context fragment. Two such methods are illustrated in FIGS.
11a and 115.

[0055] FIG. 11a indicates how initial specificity scores s;
can be calculated from a knowledge base in which text terms
are linked according to particular relations (indicated by
labelled arrows in FIG. 11a) between terms. Two context
fragments containing a selected text term, here “Huffman
code” are shown in FIG. 11a. A score s, can be calculated
from each fragment in dependence on distance (in terms of
number of hops) in the knowledge base between “Huffman
code” and other text terms, indicated by bold type, in the
fragment. For example, the score s; may be calculated as the
average of these pairwise distances. If a term is not present
in the knowledge base (e.g., “particular type” here), it is not
included in the calculation.

[0056] FIG. 115 shows another example using a knowl-
edge graph. Text terms are represented in the graph by nodes
interconnected by edges which are weighted according to
the degree of semantic relationship between terms. Using
context fragments as before, scores s, can be calculated for
“Huffman code” in dependence on the weights associated
with edges in the graph between the node representing
“Huffman code” and nodes representing the other text terms
in each fragment. For example, a score s; may be calculated
as the average of these weights.

[0057] Further embodiments may leverage known fre-
quency-based methods for computing values which can be
used as initial specificity scores. These methods use statis-
tical techniques involving frequency of occurrence of terms
in a document corpus. TF-IDF (see “Relevance weighting of

Sep. 26, 2024

search terms”, Robertson & Jones, Journal of the American
Society for Information science, vol. 27, no. 3, pp. 129-146,
1976) and PMI (see “Word association norms, mutual infor-
mation, and lexicography”, Church & Hanks, Computa-
tional Linguistics, vol. 16, no. 1, pp. 22-29, 1990) are two
commonly used frequency-based methods that can be used
to extract signals, albeit noisy, for initial specificity scores.
TF-IDF is a document-level metric indicating how important
a word is to a document. Intuitively, a word with high
specificity score should have high TF-IDF in documents
belonging to the same domain, so this metric can be used as
an initial specificity score when used with domain-specific
corpora. The TF-IDF score can also be extracted for word
n-grams and hence multiword expressions. PMI scores can
be used to find related words. If two words have a high PMI
score, then those words are likely to occur together often and
may correspond to a well-defined concept. The PMI score
can be computed by counting the number of appearances of
each word, and the number of times the words are in the
same word bi-grams. While both PMI and TF-IDF are
metrics computed using corpus-level statistics, one can
generate instance-level specificity scores using statistical
information over a subset of a corpus. For PMI, one can
sub-sample documents and compute scores over each
sample. For TF-IDF, the formula can be computed for a
given term and document in a corpus.

[0058] Various other text processing applications may be
implemented by text processor 28. For example, specificity
scores predicted by the CBR model can be used in process-
ing various text data structures to extract data having a
desired specificity. Use of the specificity scores can reduce
the processing resources required to extract relevant data
from various data structures for various purposes, and can
improve quality of extracted data, thus enhancing perfor-
mance of applications using these data structures. Some
illustrative applications are described below with reference
to FIGS. 12 through 15.

[0059] FIG. 12 illustrates operation of a knowledge induc-
tion system for extracting knowledge from a large text
corpus. Such systems commonly process huge volumes of
text mined from databases/websites in the cloud. Step 85
represents storage of the cloud data to be analyzed. In step
86, the text processor 28 ranks text terms in this data by
specificity score S;. In step 87, the cloud data is filtered,
based on the specificity scores, to identify a set of the
most-specific text terms in the corpus, e.g., text terms with
specificity scores greater than a defined threshold. In step 88,
a knowledge graph (KG) is then constructed from the
filtered data. This knowledge graph comprises nodes corre-
sponding to terms in the identified set of most-specific text
terms, interconnected by edges representing relations
between those nodes. (Such relations can be defined in
various ways for particular applications as will be apparent
to those skilled in the art). The resulting knowledge graph
provides a data structure which can be searched to extract
information represented in the graph. In response to an input
search query in step 89, the system then searches the graph
in step 90 to extract requested data. Filtering the data used
to construct the knowledge graph in this application can
significantly reduce the size of the data structure, and hence
memory required for storing the graph, while ensuring that
the most specific data, which contains most information, is
retained. The compute intensity of search operations is

US 2024/0320249 Al

likewise reduced, and search results are focused on more
specific, typically more useful, information.

[0060] FIG. 13 illustrates a processing operation relating
to expansion of keyword sets for search processes. Step 95
represents storage in the system of a word embedding matrix
comprising vectors locating respective text terms in a latent
embedding space. Such a matrix can be generated in similar
manner to embedding matrix 67 of FIG. 5 and may encode
a wide range of words/MWE in one or more technical fields.
In step 96, the text terms in the embedding matrix are ranked
by specificity score S,. Step 97 represents input by a user of
a keyword, represented by a vector in the embedding matrix,
relating to a field to be searched. In step 98, the system then
searches the embedding space around that keyword to
identify neighboring text terms in the embedding space.
Various clustering/nearest-neighbor search processes can be
employed here, with the search process being adapted to
locate a set of the most-specific text terms (e.g., terms with
specificity scores above a desired threshold) neighboring the
input keyword. In step 99, the text terms thus identified are
stored, along with the user input keyword, as an expanded
keyword set. This expanded keyword set can then be used to
search a text corpus, e.g., by string matching keywords in the
set to documents in the corpus, to identify relevant docu-
ments in the required field. Use of the specificity scores in
this application allows small, user-input keyword sets to be
automatically expanded with highly-specific related key-
words, facilitating location of relevant documents in a given
field. A particular example of this application is for collating
training documents for training text classifier models.

[0061] FIG. 14 illustrates an application for an automated
phrase extraction system. Conventional phrase extraction
systems can be used to extract theme phrases or key phrases
from documents for abstraction/summarization purposes.
These systems often use graph-based representations for
candidate key phrases in documents. Nodes representing
candidate phrases are interconnected by edges, representing
relations between nodes, with associated weights (dependent
on semantic similarity, frequency of occurrence, etc. . . .)
which are then used to select particular candidate phrases.
Step 100 of FIG. 14 represents the usual text processing
operation to generate a graph for candidate phrases. In step
101, text terms in the graph are ranked by specificity score
S,. In step 102, the graph is pruned based on specificity
scores S, for text terms in the candidate phrases to obtain a
subgraph representing a most-specific subset of these
phrases. This subset may comprise phrases containing text
terms with scores S, above a threshold. In step 103, the
resulting subgraph is then processed in the usual way to
extract particular candidate phrases from this subgraph.
Such processing may involve scoring nodes based on vari-
ous graph features to extract the particular candidate phrases
for the desired purpose.

[0062] FIG. 15 illustrates an application in a search sys-
tem. In step 105 here, text terms in a search database are
ranked by specificity score S;. In response to input of a
search query in step 106, the system identifies any ranked
text terms in the query text. In step 107, the system identifies
the ranked text terms found in the query text and then ranks
the text terms based on specificity scores. In step 108, the
system generates a response to the search query by extract-
ing data from the search database in dependence on the
specificity scores for any ranked text terms so identified. The
response here may be to suggest alternative search queries to

Sep. 26, 2024

the user, or to retrieve requested data from the search
database. The specificity scores can be used to identify the
most relevant alternative queries or response data based on
terms with the highest specificity scores in the input query.
The specificity scores may also be used to assess the degree
of knowledge of the user and return results accordingly. For
example, input queries containing highly specific text terms
suggest a knowledgeable user wanting more detailed results,
whereas low-specificity queries suggest a user needing more
general, high-level results.

[0063] It will be seen that the embodiments described offer
more efficient operation and improved results in various
processing applications, and can reduce the memory and
processing resources required for knowledge extraction
operations.

[0064] Many other changes and modifications can be
made to the exemplary embodiments described. For
example, one or more dense layers 51 may be provided in
CBR model 25, and dropout layers 56, 57, 60 may be
omitted from the training architecture. Various other NN
layer structures can be envisaged for the CBR model as will
be apparent to those skilled in the art. Also, successive
characters in the character string for a text term input to the
model may comprise sub-word units of two or more suc-
cessive letters. For example, tokenization layer 52 may
implement a sub-word unit tokenization scheme such as
BPE (Byte-Pair Encoding).

[0065] In the FIG. 5 system, the specificity calculator 65
may compute s, as a weighted average of the pairwise
distances in the embedding space, with distance between a
selected term and another term w being weighted by the
inverse of the frequency of occurrence f=n/m of a term w
appearing n times in a corpus of m words.

[0066] Various other embedding-based or frequency-
based methods may be used to provide initial specificity
scores for text terms. Scores might also be derived from
click frequencies for selected terms in knowledge bases or
other applications which allow users to click on links
associated with text terms. Embodiments of the invention
can leverage one or a combination of such methods to train
robust character-based models from noisy metrics produced
by these methods. The resulting CBR models can then
provide accurate specificity predictions for previously
unseen terms at a fraction of the computational cost of such
methods, without keeping statistics for large vocabularies or
accessing external knowledge sources or large pre-trained
embeddings (which can be tens to hundreds of gigabytes in
size).

[0067] Alternatives/modifications described in relation to
one embodiment may be applied to other embodiments as
appropriate. In general, where features are described herein
with reference to a method embodying the invention, cor-
responding features may be provided in a computing system/
computer program product embodying the invention, and
vice versa.

[0068] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to explain the principles of the embodiments, the
practical application or technical improvement over tech-

US 2024/0320249 Al

nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A computer-implemented method comprising:

storing selected text terms from a corpus of text;

determining an initial set of specificity scores for the

selected text terms to produce a set of training samples,
wherein each of the training samples comprise a
selected text term and an initial specificity score for the
selected text term;

training a character-based regression model with the set of

training samples;

retrieving an Automated Term Extraction (ATE) training

data set;

determining specificity scores for text terms included in

the ATE training data set; and

responsive to respective specificity score for a text term in

the ATE training data set being below a threshold value,
masking the text term from being used in the ATE
training data set.

2. The computer-implemented method of claim 1,
wherein the text terms included in the ATE training data set
are ranked based on the evaluation of the terms by the
character-based regression model.

3. The computer-implemented method of claim 1,
wherein the character-based regression model evaluates text
terms as a string of characters which comprise successive
sub-word units of the text term.

4. The computer-implemented method of claim 1,
wherein the initial set of specificity scores are calculated
from the corpus of text via an automated text processing
technique.

5. The computer-implemented method of claim 4, the
computer-implemented method further comprising:

determining the initial set of specificity scores for the

selected text terms is further based on distance in a
predetermined term embedding space between the
selected text terms and other text terms in a text
fragment of the corpus of text.

6. The computer-implemented method of claim 4, the
computer-implemented method further comprising:

determining the initial set of specificity scores for the

selected text terms is further based on a frequency-
based method using frequency of occurrence of that
text term in at least a subset of said corpus.

7. The computer-implemented method of claim 1, the
computer-implemented method further comprising:

receiving a search query to a database; and

generating a response to the search query by extracting

data from the database in and determining specificity
scores for any text terms identified in the search query.

8. A computer program product comprising:

one or more computer-readable storage media and pro-

gram instructions stored on the one or more computer-

readable storage media, the program instructions com-

prising:

program instructions to store selected text terms from a
corpus of text;

program instructions to determine an initial set of
specificity scores for the selected text terms to pro-
duce a set of training samples, wherein each of the
training samples comprise a selected text term and an
initial specificity score for the selected text term;

Sep. 26, 2024

program instructions to train a character-based regres-
sion model with the set of training samples;

program instructions to retrieve an Automated Term
Extraction (ATE) training data set;

program instructions to determine specificity scores for
text terms included in the ATE training data set; and

program instructions, responsive to respective specific-
ity score for a text term in the ATE training data set
being below a threshold value, to mask the text term
from being used in the ATE training data set.

9. The computer program product of claim 8, wherein the
text terms included in the ATE training data set are ranked
based on the evaluation of the terms by the character-based
regression model.

10. The computer program product of claim 8, wherein
the character-based regression model evaluates text terms as
a string of characters which comprise successive sub-word
units of the text term.

11. The computer program product of claim 8, wherein the
initial set of specificity scores are calculated from the corpus
of text via an automated text processing technique.

12. The computer program product of claim 11, the
program instructions further comprising:

program instructions to determine the initial set of speci-

ficity scores for the selected text terms is further based
on distance in a predetermined term embedding space
between the selected text terms and other text terms in
a text fragment of the corpus of text.

13. The computer program product of claim 11, the
program instructions further comprising:

program instructions to determine the initial set of speci-

ficity scores for the selected text terms is further based
on a frequency-based method using frequency of occur-
rence of that text term in at least a subset of said corpus.

14. The computer program product of claim 8, the pro-
gram instructions further comprising:

program instructions to receive a search query to a

database; and

program instructions to generate a response to the search

query by extracting data from the database in and
determining specificity scores for any text terms iden-
tified in the search query.

15. A computer system comprising:

one or more computer processors;

one or more computer readable storage media; and

program instructions stored on the computer readable

storage media for execution by at least one of the one

or more processors, the program instructions compris-

ing:

program instructions to store selected text terms from a
corpus of text;

program instructions to determine an initial set of
specificity scores for the selected text terms to pro-
duce a set of training samples, wherein each of the
training samples comprise a selected text term and an
initial specificity score for the selected text term;

program instructions to train a character-based regres-
sion model with the set of training samples;

program instructions to retrieve an Automated Term
Extraction (ATE) training data set;

program instructions to determine specificity scores for
text terms included in the ATE training data set; and

program instructions, responsive to respective specific-
ity score for a text term in the ATE training data set

US 2024/0320249 Al Sep. 26, 2024
10

being below a threshold value, to mask the text term
from being used in the ATE training data set.

16. The computer system of claim 15, wherein the text
terms included in the ATE training data set are ranked based
on the evaluation of the terms by the character-based regres-
sion model.

17. The computer system of claim 15, wherein the char-
acter-based regression model evaluates text terms as a string
of characters which comprise successive sub-word units of
the text term.

18. The computer system of claim 15, wherein the initial
set of specificity scores are calculated from the corpus of text
via an automated text processing technique.

19. The computer system of claim 18, the program
instructions further comprising:

program instructions to determine the initial set of speci-

ficity scores for the selected text terms is further based
on distance in a predetermined term embedding space
between the selected text terms and other text terms in
a text fragment of the corpus of text.

20. The computer system of claim 18, the program
instructions further comprising:

program instructions to determine the initial set of speci-

ficity scores for the selected text terms is further based
on a frequency-based method using frequency of occur-
rence of that text term in at least a subset of said corpus.

#* #* #* #* #*

	Front Page
	Drawings
	Specification
	Claims

