(19)

US 20240320429A1

a2y Patent Application Publication o) Pub. No.: US 2024/0320429 A1

United States

Antognini et al. (43) Pub. Date: Sep. 26, 2024
(54) DOMAIN-SPECIFICITY PREDICTION FOR (52) US. CL
NATURAL LANGUAGE PROCESSING CPC GOG6F 40/284 (2020.01); GOGF 16/35
(2019.01)
(71) Applicant: Internati(.)nal Business Machines (57) ABSTRACT
Corporation, Armonk, NY (US)
A method, computer-program product and computer system
(72) Tnventors: Diego Matteo Antognini, Ruvigliana are provided to de.termine domgin-speciﬁcity ofa text term.
(CH); Francesco Fusco, Zurich (CH) A processor receives a plurality of domaln-spf:mﬁc text
corpora, wherein each of the plurality of domain-specific
text corpora comprises a plurality of text documents of a
(21) Appl. No.: 18/187,875 respective domain. A processor trains a set of subword-unit
tokenizers with at least two different vocabulary sizes of the
(22) Filed: Mar. 22, 2023 respective domain-specific text corpus. A processor receives
the text-term. A processor determines a domain-specificity
Publication Classification ﬁngemﬁnt of the text-term, wherein the dom.ain-spec.iﬁcity
fingerprint comprises for each subword-unit tokenizer a
(51) Int. CL number of subword-units required to represent the text-term.
GOG6F 40/284 (2006.01) A processor provides the domain-specificity fingerprint for
GO6F 16/35 (2006.01) determining the domain-specificity of the text term.

Raw Text Raw Text

Domain A Domain B
230a 230b

[[| Raw Text

Domain N
230n

FINGERPRINT
PROGRAM 205
TEXT TERM FINGERPRINT
240 COGNITIVE 250

MODEL 200

Patent Application Publication Sep. 26, 2024 Sheet 1 of 6 US 2024/0320429 A1

Wmo

COMPUTER 101

PROCESSOR SET 110
PROCESSING CIRCUITRY 120 CACHE 121
COMMUNICATION FABRIC 111
VOLATILE MEMORY 112

PERSISTENT STORAGE 113

OPERATING SYSTEM 122

FINGERPRINT PROGRAM 205

PERIPHERAL DEVICE SET 114
UI DEVICE SET 123 STORAGE 124 loT SENSOR SET 125

— NETWORK MODULE 115

END USER DEVICE 103

REMOTE SERVER 104

REMOTE DATABASE 130

PRIVATE CLOUD 106

— GATEWAY 140
PUBLIC CLOUD 105
CLOUD ORCHESTRATION MODULE 141 HOST PHYSICAL MACHINE SET 142
VIRTUAL MACHINE SET 143 CONTAINER SET 144

FIG. 1

Patent Application Publication Sep. 26, 2024 Sheet 2 of 6 US 2024/0320429 A1

200
'/\/

'DOMAIN A 210a| [DOMAIN B 210b DOMAIN N 210x

N
TOKENIZER TOKENIZER TOKENIZER
220 TAA1 220 TAA1 220 TAA1
g S S

TOKENIZER TOKENIZER\! TOKENIZER
220TA2 220 TA2 220 TA2
®
®
®

° e o o °
o ®
o ®
TOKENIZER | i(TOKENIZER TOKENIZER
220TAn | | || 220TAn 220 TAn
~—,
FIG. 2A

i Raw Text Raw Text | ® o o Raw Text
| Domain A Domain B | DomainN |||
| 230a 230b | 230n W
i\u/,/’/\~ &_//,/ Tl —“//,/ Tl
FINGERPRINT
PROGRAM 205
TEXT TERM - »’ FINGERPRINT
....... /—\
240 . COGNITIVE | 250
i\MODEL 200 |

FIG. 2B

Patent Application Publication Sep. 26, 2024 Sheet 3 of 6 US 2024/0320429 A1

START 300
(st) Y

301 al RECEIVE TRAINING DATA SET COMPRISING
PLURALITY OF DOMAIN-SPECIFIC TEXT
CORPORA

302 TRAIN COGNITIVE MODEL WITH TRAINING SET

303
Y PROVIDE TRAINED COGNITIVE MODEL

END

FIG. 3

START 400
'A/

401
Y RECEIVE TEXT TERM

'

402 | PERFORM MACHINE LEARNING WITH
COGNITIVE MODEL

403 |
PROVIDE FINGERPRINT OF TEXT TERM

404
e APPLY FINGERPRINT

END

FIG. 4

Patent Application Publication Sep. 26, 2024 Sheet 4 of 6 US 2024/0320429 A1

500
'/\/

(O]
e 8
[jom
o O S
25tw 8
= T 9N o
S ¢ E oy > >
= £ O < L wn
o ¢ 0 o £ & o
1024 [/ e S
2048 :
4096 [
8192
16384
32768
65536 [
131072
262144
524288
1048576 |

DISTRIBUTION OF SUBWORDS

FIG. 5

Patent Application Publication

IOB Training Sample .
Huffman B-TERM | | FP
code I-TERM / 1030a
is @)
a @) .
particular B-TERM | | FP | |
type I-TERM] 1030b
of O

T
optimal B-TERM =)
prefix I-TERM ~11030c |
code I-TERM /
that @)
is @)
commonly @)
used @)
for @)
lossless B-TERM EP
data I-TERM 10304
compression I-TERM E—
1010 1020

FIG. 6

Sep. 26,2024 Sheet 5 of 6

US 2024/0320429 Al

1000
'/v

IOB Training Sample
Huffman B-TERM
code I-TERM
is ®)

a @)
particular (®)

type (®)

of O
optimal B-TERM
prefix I-TERM
code I-TERM
that ®)

is ®)
commonly ®)

used @)

for @)
lossless B-TERM
data I-TERM
compression I-TERM

1040 1050

Patent Application Publication Sep. 26, 2024 Sheet 6 of 6 US 2024/0320429 A1

O 1o

Text Snippet 1110

‘In eomputerseience and information-theory, a Huffman
code is a particular-type of optimal prefix code that is
commonly used for lossless data compression”

« ” “‘optimal prefix “‘lossless data
Huffman code " -
—FP 1120 code compression

— FP 1121 FP 1122
Feature Vector Feature Vector Feature Vector
1130 1131 1132
k Centroids
1140
Distances
1150

FIG. 7

US 2024/0320429 Al

DOMAIN-SPECIFICITY PREDICTION FOR
NATURAL LANGUAGE PROCESSING

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to the field
of natural language processing, and more particularly to
determine relevant knowledge domains of input text.

[0002] The domain-specificity of a text term, i.e., a word
or a multiword expression, is a measure to predict whether
a word or multiword expression is uniformly used across
multiple domains or whether it is peculiar of a specific
domain (domain specific). Ranking multiword expressions
by domain specificity has many important applications rang-
ing from search, summarization, and term extraction.

SUMMARY

[0003] Embodiments of the present invention provide a
method, system, and program product to determine domain-
specificity of a text term. A processor receives a plurality of
domain-specific text corpora, wherein each of the plurality
of domain-specific text corpora comprises a plurality of text
documents of a respective domain. A processor trains a set
of subword-unit tokenizers with at least two different
vocabulary sizes of the respective domain-specific text cor-
pus. A processor receives the text-term. A processor deter-
mines a domain-specificity fingerprint of the text-term,
wherein the domain-specificity fingerprint comprises for
each subword-unit tokenizer a number of subword-units
required to represent the text-term. A processor provides the
domain-specificity fingerprint for determining the domain-
specificity of the text term.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0004] FIG. 1 depicts a block diagram of components of
the computing device executing a fingerprint program, in
accordance with an exemplary embodiment of the present
invention.

[0005] FIG. 2A depicts a cognitive model which may be
used in a computer-implemented method for determining
domain-specificity of a text term according to an embodi-
ment of the invention.

[0006] FIG. 2B depict a system for performing a com-
puter-implemented method for determining domain-speci-
ficity of a text term.

[0007] FIG. 3 depicts a flow chart of a computer-imple-
mented method for training a machine learning application
for determining domain-specificity of a text term.

[0008] FIG. 4 depicts a flow chart of a computer-imple-
mented method for performing an inference of a machine
learning program for determining domain-specificity of a
text term.

[0009] FIG. 5 depicts a domain-specificity fingerprint of
exemplary text terms of embodiments of the invention.
[0010] FIG. 6 illustrates a corresponding example of a
method according to embodiments of the invention to filter
out non-domain specific terms while prioritizing domain
specific terms.

[0011] FIG. 7 illustrates steps of a method for topic
modelling according to an embodiment of the invention.

Sep. 26, 2024

DETAILED DESCRIPTION

[0012] Various aspects of the present disclosure are
described by narrative text, flowcharts, block diagrams of
computer systems and/or block diagrams of the machine
logic included in computer program product (CPP) embodi-
ments. With respect to any flowcharts, depending upon the
technology involved, the operations can be performed in a
different order than what is shown in a given flowchart. For
example, again depending upon the technology involved,
two operations shown in successive flowchart blocks may be
performed in reverse order, as a single integrated step,
concurrently, or in a manner at least partially overlapping in
time.

[0013] A computer program product embodiment (“CPP
embodiment” or “CPP”) is a term used in the present
disclosure to describe any set of one, or more, storage media
(also called “mediums”) collectively included in a set of one,
or more, storage devices that collectively include machine
readable code corresponding to instructions and/or data for
performing computer operations specified in a given CPP
claim. A “storage device” is any tangible device that can
retain and store instructions for use by a computer processor.
Without limitation, the computer readable storage medium
may be an electronic storage medium, a magnetic storage
medium, an optical storage medium, an electromagnetic
storage medium, a semiconductor storage medium, a
mechanical storage medium, or any suitable combination of
the foregoing. Some known types of storage devices that
include these mediums include: diskette, hard disk, random
access memory (RAM), read-only memory (ROM), erasable
programmable read-only memory (EPROM or Flash
memory), static random access memory (SRAM), compact
disc read-only memory (CD-ROM), digital versatile disk
(DVD), memory stick, floppy disk, mechanically encoded
device (such as punch cards or pits/lands formed in a major
surface of a disc) or any suitable combination of the fore-
going. A computer readable storage medium, as that term is
used in the present disclosure, is not to be construed as
storage in the form of transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide,
light pulses passing through a fiber optic cable, electrical
signals communicated through a wire, and/or other trans-
mission media. As will be understood by those of skill in the
art, data is typically moved at some occasional points in time
during normal operations of a storage device, such as during
access, de-fragmentation or garbage collection, but this does
not render the storage device as transitory because the data
is not transitory while it is stored.

[0014] Computing environment 100 contains an example
of an environment for the execution of at least some of the
computer code involved in performing the inventive meth-
ods, such as fingerprint program 205, computing environ-
ment 100 includes, for example, computer 101, wide area
network (WAN) 102, end user device (EUD) 103, remote
server 104, public cloud 105, and private cloud 106. In this
embodiment, computer 101 includes processor set 110 (in-
cluding processing circuitry 120 and cache 121), commu-
nication fabric 111, volatile memory 112, persistent storage
113 (including operating system 122 and block 200, as
identified above), peripheral device set 114 (including user
interface (UI) device set 123, storage 124, and Internet of
Things (IoT) sensor set 125), and network module 115.
Remote server 104 includes remote database 130. Public

US 2024/0320429 Al

cloud 105 includes gateway 140, cloud orchestration module
141, host physical machine set 142, virtual machine set 143,
and container set 144.

[0015] COMPUTER 101 may take the form of a desktop
computer, laptop computer, tablet computer, smart phone,
smart watch or other wearable computer, mainframe com-
puter, quantum computer or any other form of computer or
mobile device now known or to be developed in the future
that is capable of running a program, accessing a network or
querying a database, such as remote database 130. As is well
understood in the art of computer technology, and depending
upon the technology, performance of a computer-imple-
mented method may be distributed among multiple comput-
ers and/or between multiple locations. On the other hand, in
this presentation of computing environment 100, detailed
discussion is focused on a single computer, specifically
computer 101, to keep the presentation as simple as possible.
Computer 101 may be located in a cloud, even though it is
not shown in a cloud in FIG. 1. On the other hand, computer
101 is not required to be in a cloud except to any extent as
may be affirmatively indicated.

[0016] PROCESSOR SET 110 includes one, or more,
computer processors of any type now known or to be
developed in the future. Processing circuitry 120 may be
distributed over multiple packages, for example, multiple,
coordinated integrated circuit chips. Processing circuitry
120 may implement multiple processor threads and/or mul-
tiple processor cores. Cache 121 is memory that is located
in the processor chip package(s) and is typically used for
data or code that should be available for rapid access by the
threads or cores running on processor set 110. Cache memo-
ries are typically organized into multiple levels depending
upon relative proximity to the processing circuitry. Alterna-
tively, some, or all, of the cache for the processor set may be
located “off chip.” In some computing environments, pro-
cessor set 110 may be designed for working with qubits and
performing quantum computing.

[0017] Computer readable program instructions are typi-
cally loaded onto computer 101 to cause a series of opera-
tional steps to be performed by processor set 110 of com-
puter 101 and thereby effect a computer-implemented
method, such that the instructions thus executed will instan-
tiate the methods specified in flowcharts and/or narrative
descriptions of computer-implemented methods included in
this document (collectively referred to as “the inventive
methods™). These computer readable program instructions
are stored in various types of computer readable storage
media, such as cache 121 and the other storage media
discussed below. The program instructions, and associated
data, are accessed by processor set 110 to control and direct
performance of the inventive methods. In computing envi-
ronment 100, at least some of the instructions for performing
the inventive methods (i.e., fingerprint program 205) may be
stored in persistent storage 113.

[0018] COMMUNICATION FABRIC 111 is the signal
conduction path that allows the various components of
computer 101 to communicate with each other. Typically,
this fabric is made of switches and electrically conductive
paths, such as the switches and electrically conductive paths
that make up busses, bridges, physical input/output ports and
the like. Other types of signal communication paths may be
used, such as fiber optic communication paths and/or wire-
less communication paths.

Sep. 26, 2024

[0019] VOLATILE MEMORY 112 is any type of volatile
memory now known or to be developed in the future.
Examples include dynamic type random access memory
(RAM) or static type RAM. Typically, volatile memory 112
is characterized by random access, but this is not required
unless affirmatively indicated. In computer 101, the volatile
memory 112 is located in a single package and is internal to
computer 101, but, alternatively or additionally, the volatile
memory may be distributed over multiple packages and/or
located externally with respect to computer 101.

[0020] PERSISTENT STORAGE 113 is any form of non-
volatile storage for computers that is now known or to be
developed in the future. The non-volatility of this storage
means that the stored data is maintained regardless of
whether power is being supplied to computer 101 and/or
directly to persistent storage 113. Persistent storage 113 may
be a read only memory (ROM), but typically at least a
portion of the persistent storage allows writing of data,
deletion of data and re-writing of data. Some familiar forms
of persistent storage include magnetic disks and solid state
storage devices. Operating system 122 may take several
forms, such as various known proprietary operating systems
or open source Portable Operating System Interface-type
operating systems that employ a kernel. The code included
in block 200 typically includes at least some of the computer
code involved in performing the inventive methods.

[0021] PERIPHERAL DEVICE SET 114 includes the set
of peripheral devices of computer 101. Data communication
connections between the peripheral devices and the other
components of computer 101 may be implemented in vari-
ous ways, such as Bluetooth connections, Near-Field Com-
munication (NFC) connections, connections made by cables
(such as universal serial bus (USB) type cables), insertion-
type connections (for example, secure digital (SD) card),
connections made through local area communication net-
works and even connections made through wide area net-
works such as the internet. In various embodiments, Ul
device set 123 may include components such as a display
screen, speaker, microphone, wearable devices (such as
goggles and smart watches), keyboard, mouse, printer,
touchpad, game controllers, and haptic devices. Storage 124
is external storage, such as an external hard drive, or
insertable storage, such as an SD card. Storage 124 may be
persistent and/or volatile. In some embodiments, storage 124
may take the form of a quantum computing storage device
for storing data in the form of qubits. In embodiments where
computer 101 is required to have a large amount of storage
(for example, where computer 101 locally stores and man-
ages a large database) then this storage may be provided by
peripheral storage devices designed for storing very large
amounts of data, such as a storage area network (SAN) that
is shared by multiple, geographically distributed computers.
IoT sensor set 125 is made up of sensors that can be used in
Internet of Things applications. For example, one sensor
may be a thermometer and another sensor may be a motion
detector.

[0022] NETWORK MODULE 115 is the collection of
computer software, hardware, and firmware that allows
computer 101 to communicate with other computers through
WAN 102. Network module 115 may include hardware,
such as modems or Wi-Fi signal transceivers, software for
packetizing and/or de-packetizing data for communication
network transmission, and/or web browser software for
communicating data over the internet. In some embodi-

US 2024/0320429 Al

ments, network control functions and network forwarding
functions of network module 115 are performed on the same
physical hardware device. In other embodiments (for
example, embodiments that utilize software-defined net-
working (SDN)), the control functions and the forwarding
functions of network module 115 are performed on physi-
cally separate devices, such that the control functions man-
age several different network hardware devices. Computer
readable program instructions for performing the inventive
methods can typically be downloaded to computer 101 from
an external computer or external storage device through a
network adapter card or network interface included in net-
work module 115.

[0023] WAN 102 is any wide area network (for example,
the internet) capable of communicating computer data over
non-local distances by any technology for communicating
computer data, now known or to be developed in the future.
In some embodiments, the WAN 102 may be replaced and/or
supplemented by local area networks (LANs) designed to
communicate data between devices located in a local area,
such as a Wi-Fi network. The WAN and/or LANs typically
include computer hardware such as copper transmission
cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and edge
servers.

[0024] END USER DEVICE (EUD) 103 is any computer
system that is used and controlled by an end user (for
example, a customer of an enterprise that operates computer
101), and may take any of the forms discussed above in
connection with computer 101. EUD 103 typically receives
helpful and useful data from the operations of computer 101.
For example, in a hypothetical case where computer 101 is
designed to provide a recommendation to an end user, this
recommendation would typically be communicated from
network module 115 of computer 101 through WAN 102 to
EUD 103. In this way, EUD 103 can display, or otherwise
present, the recommendation to an end user. In some
embodiments, EUD 103 may be a client device, such as thin
client, heavy client, mainframe computer, desktop computer
and so on.

[0025] REMOTE SERVER 104 is any computer system
that serves at least some data and/or functionality to com-
puter 101. Remote server 104 may be controlled and used by
the same entity that operates computer 101. Remote server
104 represents the machine(s) that collect and store helpful
and useful data for use by other computers, such as computer
101. For example, in a hypothetical case where computer
101 is designed and programmed to provide a recommen-
dation based on historical data, then this historical data may
be provided to computer 101 from remote database 130 of
remote server 104.

[0026] PUBLIC CLOUD 105 is any computer system
available for use by multiple entities that provides on-
demand availability of computer system resources and/or
other computer capabilities, especially data storage (cloud
storage) and computing power, without direct active man-
agement by the user. Cloud computing typically leverages
sharing of resources to achieve coherence and economies of
scale. The direct and active management of the computing
resources of public cloud 105 is performed by the computer
hardware and/or software of cloud orchestration module
141. The computing resources provided by public cloud 105
are typically implemented by virtual computing environ-
ments that run on various computers making up the com-

Sep. 26, 2024

puters of host physical machine set 142, which is the
universe of physical computers in and/or available to public
cloud 105. The virtual computing environments (VCEs)
typically take the form of virtual machines from virtual
machine set 143 and/or containers from container set 144. It
is understood that these VCEs may be stored as images and
may be transferred among and between the various physical
machine hosts, either as images or after instantiation of the
VCE. Cloud orchestration module 141 manages the transfer
and storage of images, deploys new instantiations of VCEs
and manages active instantiations of VCE deployments.
Gateway 140 is the collection of computer software, hard-
ware, and firmware that allows public cloud 105 to com-
municate through WAN 102.

[0027] Some further explanation of virtualized computing
environments (VCEs) will now be provided. VCEs can be
stored as “images.” A new active instance of the VCE can be
instantiated from the image. Two familiar types of VCEs are
virtual machines and containers. A container is a VCE that
uses operating-system-level virtualization. This refers to an
operating system feature in which the kernel allows the
existence of multiple isolated user-space instances, called
containers. These isolated user-space instances typically
behave as real computers from the point of view of programs
running in them. A computer program running on an ordi-
nary operating system can utilize all resources of that
computer, such as connected devices, files and folders,
network shares, CPU power, and quantifiable hardware
capabilities. However, programs running inside a container
can only use the contents of the container and devices
assigned to the container, a feature which is known as
containerization.

[0028] PRIVATE CLOUD 106 is similar to public cloud
105, except that the computing resources are only available
for use by a single enterprise. While private cloud 106 is
depicted as being in communication with WAN 102, in other
embodiments a private cloud may be disconnected from the
internet entirely and only accessible through a local/private
network. A hybrid cloud is a composition of multiple clouds
of different types (for example, private, community or public
cloud types), often respectively implemented by different
vendors. Each of the multiple clouds remains a separate and
discrete entity, but the larger hybrid cloud architecture is
bound together by standardized or proprietary technology
that enables orchestration, management, and/or data/appli-
cation portability between the multiple constituent clouds. In
this embodiment, public cloud 105 and private cloud 106 are
both part of a larger hybrid cloud

[0029] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0030] These computer readable program instructions may
be provided to a processor of a computer, or other program-
mable data processing apparatus to produce a machine, such
that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These

US 2024/0320429 Al

computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0031] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0032] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, in a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0033] Inreferenceto FIGS. 1-7, some general aspects and
terms of embodiments of the invention are described.
[0034] Domain: A particular topic, in particular a field of
technology or natural science. As an example, domains may
include biology, chemistry, computer science, engineering,
material science, physics, psychology etc.

[0035] Domain-specificity: A measure whether a term is
used mainly, exclusively or predominantly in one or more
domains or whether it is commonly used across a plurality
of domains.

[0036] Text term: A text term may be in particular a word
or a multi-word.

[0037] Surface form of text term: The surface form of a
text term is the form of a respective text term as it appears
in the text and corresponds to “what we see” in a text term.
[0038] Domain-specific text corpus: A corpus comprising
a plurality of text documents, e.g. abstracts from patents or
scientific articles, which are specific for a particular domain.
[0039] Tokenizer: A unit or entity that performs a tokeni-
zation of a text term, in particular of a word or multiword
expression, into smaller units, denoted as tokens. Tokens can
generally be either words, characters, or something in
between characters and words, in particular subwords.

Sep. 26, 2024

[0040] Subword or subword-unit: A subword or subword-
unit shall generally denote a unit that comprises tokens and
is smaller than a text term. A subword or subword-unit may
be a single character or n-gram characters or even an entire
word. Subword-units may encompass in particular mor-
phemes, prefixes, affixes, suffixes, stems and endings.
[0041] Subword-unit tokenizer: A unit or entity that per-
forms a tokenization of a text term, in particular of a word
or multiword expression, into smaller units, denoted as
subwords or subword-units. Subword-unit tokenization is a
solution between word and character-based tokenization. It
addresses issues faced by word-based tokenization such as
very large vocabulary size and character-based tokenization
such as very long sequences. The goal of a subword-unit
tokenizer is to be able to represent a text term into a fixed
(and limited) set of subword units. The subword-unit token-
izer uses a set of subword-units which is defined as part of
a training process over a text corpora. Subword-unit token-
izers according to embodiments of the invention use word
segmentation algorithms. According to embodiments, Byte-
Pair Encoding. WordPiece and unigram language modeling
may be used. Such word segmentation algorithms or in other
words subword-unit tokenization algorithms perform
tokenization at the subword level and have been introduced
to represent with high fidelity common words, and to
represent less frequent words with longer sequences of
symbols. For example, a tokenizer trained on general-
domain corpora would encode the word “paracetamol” into
[“para”, “ce”. “tam”, “o0l” while a tokenizer trained on the
chemistry domain would encode it as [“paracetamol”] (see
Table I below for other examples).

[0042] Subword-unit tokenization algorithms solve the
problem of out-of-vocabulary words, as every token can be
expressed as a combination of tokens belonging to a vocabu-
lary. While the word segmentation algorithms share the
same objective to split tokens into subword units belonging
to a relatively small vocabulary, the way tokens are split can
capture morphological features with different degrees of
accuracy.

[0043] Domain-specificity fingerprint of a text-term: Such
a domain-specificity fingerprint establishes a domain distri-
bution feature of the text term and may also be denoted as
heatmap.

[0044] A domain-specificity fingerprint of a text term
comprises for each domain a plurality of numbers or values,
wherein each number or value corresponds to a number of
subword-units required to represent the text-term by a
corresponding subword unit tokenizer of a set of subword-
unit tokenizers allocated to the corresponding domain. Each
subword unit tokenizer of a corresponding set has been
trained with a different vocabulary size of a corresponding
domain-specific text corpus. Accordingly, a domain-speci-
ficity fingerprint of a text term for a plurality m of domains
and for n subword unit tokenizers per set and domain
comprises mxn numbers or values. These values or numbers
may hence be represented by an mxn matrix.

[0045] Embodiments of the invention disclose an unsu-
pervised method which can be used to predict whether a
word or multiword expression is uniformly used across
multiple domains or whether it is peculiar of a specific
domain. i.e., domain specific. Ranking multiword expres-
sions by domain specificity has many important applications
ranging from search, summarization, and term extraction.
Methods according to embodiments of the invention use

US 2024/0320429 Al

domain-specific subword-unit tokenizers to create a domain-
specificity fingerprint. The domain-specificity fingerprints
may be computed fast and efficiently, e.g., in 0.2 ms for a
single multiword expression. Furthermore, it is not required
that the multiword expression is present in the corpus.

[0046] Embodiments of the invention make use of mul-
tiple domain-specific text corpora to determine to which
corpora and hence domain new text terms belong. Embodi-
ments of the invention may be used in search engines to
understand the intent of a given query. Search query under-
standing allows to provide answers that are relevant for a
given query. Embodiments of the invention allow to predict
the domain of the query by classifying the text term, in
particular the multiword expression, using solely the surface
form of the text term. Embodiments of the invention may be
used to classify the domain of the query term by computing
the domain-specificity fingerprint of the term.

[0047] Embodiments of the invention may be used in
applications where a text term such as a word or multiword
expression is given and an output signal is desired that
indicates whether the word or multiword expression is
specific towards a given textual domain, or whether it is used
across different domains. Embodiments of the invention
may be used to predict the domain provenance of a word or
multiword expression by just using its surface form. To
achieve this goal, embodiments of the invention use sub-
word-unit tokenizers and large domain-specific corpora for
training the subword-unit tokenizers with different vocabu-
lary sizes.

[0048] Embodiments of the invention are based on the
intuition of the present inventors that subword-unit token-
izers trained on a specific domain can represent a text term
belonging to that domain with a lower number of subword
units than tokenizers trained on distinct domains.

[0049] FIG. 2A shows a high-level illustration of a cog-
nitive model 200 which may be used in a computer-imple-
mented method for determining domain-specificity of a text
term according to an embodiment of the invention. The
cognitive model 200 comprises a plurality of domains
210a-x which may correspond e.g. to a particular field of
technology or natural science. As an example, domains may
include biology, chemistry, computer science, engineering,
material science, physics, psychology etc.

[0050] For each of the domains 2104a-x there is provided a
set of subword-unit tokenizers comprising n subword-unit
tokenizers 220, wherein n is an integer. As an example, for
the domain A there is provided a set of subword-unit
tokenizers 220 comprising n subword-unit tokenizers
220TA1, TA2, TA3, ..., TA.n. As a further example, for
the domain B there is provided a set of subword-unit
tokenizers comprising n subword-unit tokenizers TB.1,
TB.2, TB.3, ..., TB.n.

[0051] In order to train the subword-unit tokenizers 220 of
a respective domain, a corresponding domain-specific text
corpus is provided. A domain-specific text corpus comprises
a plurality of text documents of a respective domain. As an
example, abstracts from exemplary domains such as biology,
chemistry, computer science, engineering, material science,
physics and psychology may be collected, e.g. from Seman-
tic Scholar. The abstracts may then be grouped by domain to
create the corresponding domain-specific corpora. Each
corpus may consist of a plurality of abstracts, e.g. 100000 or
1 million or more abstracts. Each of the subword-unit

Sep. 26, 2024

tokenizers 220 of a given domain is trained with a different
vocabulary size of the corresponding domain-specific text
corpus.

[0052] As an example, the vocabulary size may be
increased by a power of 2. Assuming that a domain-specific
text corpus of the domain A has a vocabulary size of
1048576, starting from TA.1 the tokenizers will be trained
with an increasing vocabulary size and only the tokenizer
TA.n will be trained with the complete vocabulary size of
1048576. As an example, the tokenizer TA.1 may be trained
with a vocabulary size of 1024, the tokenizer TA.2 with a
vocabulary size of 2048 and so on. According to embodi-
ments, the size may be increased at various scales.

[0053] Referring now to FIG. 2B, a system 290 for per-
forming a computer-implemented method of fingerprint
program 205 for determining domain-specificity of a text
term 240 is illustrated. In computing system 290, the cog-
nitive model 200 of FIG. 1 is executed or otherwise imple-
mented via fingerprint program 205. The cognitive model
200 of fingerprint program 205 is trained with domain-
specific text corpora 230a-n, i.e. the tokenizers of domain A
with documents of a text corpus TCA, the tokenizers of
domain B with documents of a text corpus TCB and the
tokenizers of domain X with documents of a text corpus
TCX. After training the cognitive model 200, the system 290
may perform an inference. During the inference, the com-
puting system 290 receives one or more text terms and
determines the domain-specificity of the received text term
240 by means of the computer-implemented method accord-
ing to embodiments of the invention. More particularly, a
domain-specificity fingerprint 250 of the text-term 240 is
computed, which may also be denoted as heatmap. The
domain-specificity fingerprint 250 comprises for each sub-
word-unit tokenizer 220 a respective number of subword-
units required to represent the received text-term. The fin-
gerprint 250 of the text term may then be used for various
application, e.g. for filtering, for classification or for other
purposes.

[0054] FIG. 3 shows a flow chart 300 of a computer-
implemented method for training a machine learning appli-
cation for determining domain-specificity of a text term. At
a step 301. a training data set is received which comprises
a plurality of domain-specific text corpora. Each of the
domain specific text corpora comprises a plurality of text
documents, e.g. abstracts, of a respective domain. At a step
302, the cognitive model of the machine learning program is
trained with the training data set. The cognitive model
comprises for each of the respective domains a set of
subword-unit tokenizers 220. The training comprises train-
ing each of the subword-unit tokenizers 220 of the respec-
tive set of subword-unit tokenizers 220 with a different
vocabulary size of the corresponding domain-specific text
corpus. At a step 303, the trained cognitive model is pro-
vided as output and can then be used for inference of the
machine learning application.

[0055] FIG. 4 shows a flow chart 400 of a computer-
implemented method for performing an inference of a
machine learning program for determining domain-specific-
ity of a text term. At a step 401, the machine learning
program receives the text-term. At a step 402, the machine
learning program is performed with the model provided at
step 303. This includes computing a domain-specificity
fingerprint of the text-term, wherein the domain-specificity
fingerprint comprises for each subword-unit tokenizer a

US 2024/0320429 Al

number of subword-units required to represent the text-term.
At a step 403, the machine learning program provides the
domain-specificity fingerprint as output. At a step 404, the
machine learning program may apply the domain-specificity
fingerprint for various applications such as classification and
filtering.

[0056] In various embodiments, each of the plurality of
domain-specific text corpora comprises a plurality of text
documents of a corresponding domain. Assuming a similar
structure of the underlying cognitive model as shown in FIG.
2A, training data sets of domain-specific text corpora for
domains A, B, C, . . ., X can be achieved.

[0057] The machine learning application comprises a cog-
nitive model which provides for each of the respective
domains A, B, . . ., X a set of subword-unit tokenizers 220
TA1, TA2,...,TAn;...;TX1,TX,2,. .., TX.n. The sets
of domain-specific text corpora are then used to train the
subword-unit tokenizers 220 as follows: the tokenizer TA.1
is trained with a text corpus TCA.1 of a vocabulary size 1,
e.g. a vocabulary size 1024. Then, the tokenizer TA.2 is
trained with a text corpus TCA.2 of a vocabulary size 2, e.g.
a vocabulary size 2048. These steps are then repeated with
an increasing vocabulary size using e.g. powers of two.
[0058] This is reiterated until tokenizer TA.X is trained
with the largest text corpus TCA.X of a vocabulary size X,
e.g. a vocabulary size 1048576. Then the above mentioned
steps are performed for the next domain B, with increasing
vocabulary sizes. The above described procedure is then
repeated for all the domains a-x of the respective application
in a corresponding manner.

[0059] FIG. 5 show domain-specificity fingerprint 500 of
text terms, wherein the text terms are not contained in the
plurality of domain-specific corpora which have been used
for training. The x-axis corresponds to the different domains
and the y-axis represents different vocabulary sizes of the
domain-specific corpora. For each combination, the required
minimum number of subword units of the given term is
shown which has been computed by the corresponding
subword-unit tokenizer. From FIG. 5 it can be observed that
the domain of each term can be identified by finding the
subword-unit tokenizer that produces the minimum number
of subword-units with the smallest vocabulary.

[0060] In various embodiments, an approach which is
used according to embodiments of the invention is to
determine the domain specificity of the text term by ana-
lyzing a contour of the domain-specificity fingerprint. The
contour may comprise for each domain a value correspond-
ing to a respective subword-unit tokenizer of the domain at
which a minimum number of subword units required to
encode the text term across all domains and vocabulary sizes
is reached. According to embodiments, the contour may be
computed by determining at first a minimum number of
subword units required to encode the text term across all
domains and vocabulary sizes. Furthermore, the subword-
unit tokenizers 220 of the highest vocabulary size may be
defined as reference or height level or bottom. Then, for each
domain a value or height may be computed corresponding to
a distance to the reference level at which the minimum
number is achieved. If the minimum number is not achieved
within the domain, a value or height 0 may be assigned.
[0061] According to embodiments, the domain specificity
of the fingerprint may be determined by computing the
maximum delta between consecutive values in the contour
and using the maximum delta as a score for the domain-

Sep. 26, 2024

specificity of the text term. According to embodiments a
threshold value for the maximum delta may be assigned. If
the maximum of the deltas is above a threshold, then the
word is domain specific. According to embodiments, a value
of 3 has been proven to work well. On the other hand, if the
maximum threshold value is O or 1, then the contour is
basically a flat line corresponding to terms which do not
have a high-domain specificity. According to embodiments,
the deltas may be sorted and only the difference between the
two largest deltas may be verified. According to further
embodiments, more complex schemes may be used to iden-
tify peaks on the histogram made of the deltas. According to
embodiments, the “peakiness”/skewness of the contour may
be used as well as the area under the curve (AUC).

[0062] According to further embodiments, the method of
for determining domain-specificity of text terms may be
used to determine the domain provenance of terms and for
topic classification. According to embodiments, a system
may be provided which can load the domain-specificity
fingerprint for a large set of multiword expressions. Given a
specific multiword expression as input, methods according
to embodiments of the invention may find all the multiword
expressions which are close to the input expression accord-
ing to the cosine similarity of the corresponding domain-
specificity fingerprints.

[0063] To extract a feature vector from a domain-speci-
ficity fingerprint, the fingerprint may be represented in
column-wise order and the values may be normalized using
the 1.2 norm. According to embodiments a k-nearest neigh-
bors classifier may be used to discriminate multiword
expressions according to the domain they belong to.
[0064] According to embodiments, a large dataset of
domain-specificity fingerprints may be computed and then a
set of k centroids may be computed, where k is the number
of the domains for which the subword-unit tokenizers 220
have been trained. To classify a given text term, methods
according to embodiments of the invention may compute the
corresponding domain-specificity fingerprint and then com-
pute the distance between the respective domain-specificity
fingerprint and the centroids. In practice, such operations
may be executed in less than one millisecond.

[0065] Methods according to embodiments of the inven-
tion may be used to improve the precision of term extractor
annotators. Such term extractors are pre-trained language
models that are fine-tuned for the term extraction task. The
training data used for fine-tuning may be generated with a
fully unsupervised approach and may be embodied as a
dataset for sequence tagging expressed e.g., in IOB format
(inside, outside, beginning).

[0066] When building the training dataset for such a term
extraction task, embodiments of the invention may be used
to filter out noisy annotations from the IOB training set, e.g.
unspecific terms. As explained above, methods according to
embodiments of the invention may be used to detect con-
figurations corresponding to configurations as shown in FIG.
9a which are most probably not domain-specific.

[0067] Furthermore, embodiments of the invention may be
used to provide a training dataset that covers multiple
domains without having some domains overrepresented than
the others. Embodiments of the invention may be used to
prioritize highly domain-specific terms while eliminating
non-domain specific terms.

[0068] FIG. 6 illustrates a corresponding example process,
designated 1000, according to embodiments of the invention

US 2024/0320429 Al

to filter out non-domain specific terms while prioritizing
domain specific terms. More particularly, FIG. 6 shows an
JOB training sample text “Huffman code is a particular type
of optimal prefix code that is commonly used for lossless
data compression”. The left column 1010 shows the input
training sample and the column 1020 the corresponding IOB
tagging. For the multi-word expressions comprising the
respective B-terms and I-terms a domain-specificity finger-
prints are computed and shown as fingerprints (FPs) 1030a-
d. The 1OB filtered training sample is then shown in columns
1040 and 1050.

[0069] The domain-specificity fingerprint of the multi-
word expression “particular type” reflects an unspecific
multiword expression similar to the domain-specificity fin-
gerprint. Hence it can be removed according to embodi-
ments to prioritize highly-specific terms such as “optimal
prefix code” or “lossless data compression” as shown in the
columns 1040 and 1050.

[0070] According to embodiments, datasets may be bal-
anced according to domains. Given the domain-specificity
fingerprints of all the text terms of a given set, a domain-
specificity fingerprint matrix may be built and clustered in k
clusters, where k is the number of domains. Then, k cen-
troids may be computed/determined. Then, for each term in
the dataset, the distance to the k centroids may be computed.
By repeating the process for each text term, a histogram may
be computed which stores the number of samples per
domain and, eventually, may discard some samples to bal-
ance the number of (training) instances by domain.

[0071] FIG. 7 illustrates steps of a method, generally
designated as 1100, for topic modelling according to an
embodiment of the invention. It starts with a text snippet
1110 from which multiword expressions which are not
domain specific are filtered out, in this example the multi-
word expressions “computer science”, “information theory”
and “particular type”. Furthermore, domain-specific multi-
words are extracted such as “Huffman code”, “optimal prefix
code” and lossless data compression”.

[0072] For these domain-specific multi-words the domain-
specificity fingerprints 1120, 1121 and 1122 are computed.
From the domain-specificity fingerprints 1120, 1121 and
1122 feature vectors 1130, 1131 and 1132 are computed
respectively. The feature vectors 1130, 1131 and 1132 rep-
resent the domain-specificity fingerprint in column-wise
order and the values are normalized using the 1.2 norm, i.e.
they are calculated as the square root of the sum of the
squared vector values. Furthermore, a large matrix of heat-
map features may be built corresponding to a large vocabu-
lary of terms using the tokenizers corresponding to the k
domains. Then k centroids 1140 can be identified with a
clustering algorithm such as k-means. The classification of
a given term may then be performed by computing the
minimum distances 1150 between a given term and each of
the k centroids.

[0073] The programs described herein are identified based
upon the application for which they are implemented in a
specific embodiment of the invention. However, it should be
appreciated that any particular program nomenclature herein
is used merely for convenience, and thus the invention
should not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

What is claimed is:

1. A computer-implemented method for determining
domain-specificity of a text term, the method comprising:

Sep. 26, 2024

receiving a plurality of domain-specific text corpora,
wherein each of the plurality of domain-specific text
corpora comprises a plurality of text documents of a
respective domain;

training a set of subword-unit tokenizers with at least two

different vocabulary sizes of the respective domain-
specific text corpus;
receiving the text-term;
determining a domain-specificity fingerprint of the text-
term, wherein the domain-specificity fingerprint com-
prises for each subword-unit tokenizer a number of
subword-units required to represent the text-term; and

providing the domain-specificity fingerprint for determin-
ing the domain-specificity of the text term.

2. The computer-implemented method of claim 1,
wherein the text term comprises words or multi-words.

3. The computer-implemented method of claim 1,
wherein determining the domain-specificity fingerprint fur-
ther comprises:

assigning the text term to one or more domains of the

respective set of subword-unit tokenizers that compute
a minimum number of subword-units required to rep-
resent the text-term with the smallest vocabulary size.

4. The computer-implemented method of claim 1, the
method further comprising:

determining the domain specificity of the text term by

analyzing a contour of the domain-specificity finger-
print.

5. The computer-implemented method of claim 4,
wherein the contour comprises a value corresponding to a
respective subword-unit tokenizer of the domain at which a
minimum number of subword units required to encode the
text term across all domains and vocabulary sizes is reached.

6. The computer-implemented method of claim 4,
wherein determining the domain specificity by analyzing the
contour further comprises:

computing the maximum delta between any pair of values

in the contour; and

assigning the maximum delta as a score for the domain-

specificity of the text term.

7. The computer-implemented method of claim 2,
wherein the domain-specificity fingerprint of the multi-
words are based on a domain provenance of the text-term
using a k-nearest neighbor algorithm (k-NN) classifier.

8. A computer program product for determining domain-
specificity of a text term, the computer program product
comprising:

one or more computer-readable storage media and pro-

gram instructions stored on the one or more computer-

readable storage media, the program instructions com-

prising:

program instructions to receive a plurality of domain-
specific text corpora, wherein each of the plurality of
domain-specific text corpora comprises a plurality of
text documents of a respective domain;

program instructions to train a set of subword-unit
tokenizers with at least two different vocabulary
sizes of the respective domain-specific text corpus;

program instructions to receive the text-term;

program instructions to determine a domain-specificity
fingerprint of the text-term, wherein the domain-
specificity fingerprint comprises for each subword-
unit tokenizer a number of subword-units required to
represent the text-term; and

US 2024/0320429 Al

program instructions to provide the domain-specificity
fingerprint for determining the domain-specificity of
the text term.

9. The computer program product of claim 8, wherein the
text term comprises words or multi-words.

10. The computer program product of claim 8, wherein
determining the domain-specificity fingerprint further com-
prises:

program instructions to assign the text term to one or more

domains of the respective set of subword-unit token-
izers that compute a minimum number of subword-
units required to represent the text-term with the small-
est vocabulary size.

11. The computer program product of claim 8, the method
further comprising:

program instructions to determine the domain specificity

of the text term by analyzing a contour of the domain-
specificity fingerprint.

12. The computer program product of claim 11, wherein
the contour comprises a value corresponding to a respective
subword-unit tokenizer of the domain at which a minimum
number of subword units required to encode the text term
across all domains and vocabulary sizes is reached.

13. The computer program product of claim 11, wherein
determining the domain specificity by analyzing the contour
further comprises:

program instructions to compute the maximum delta

between any pair of values in the contour; and

program instructions to assign the maximum delta as a

score for the domain-specificity of the text term.

14. The computer program product of claim 9, wherein
the domain-specificity fingerprint of the multi-words are
based on a domain provenance of the text-term using a
k-nearest neighbor algorithm (k-NN) classifier.

15. A computer system for determining domain-specific-
ity of a text term, the computer system comprising:

one or more computer processors;

one or more computer readable storage media; and

program instructions stored on the computer readable

storage media for execution by at least one of the one
or more processors, the program instructions compris-
ing:

Sep. 26, 2024

program instructions to receive a plurality of domain-
specific text corpora, wherein each of the plurality of
domain-specific text corpora comprises a plurality of
text documents of a respective domain;

program instructions to train a set of subword-unit
tokenizers with at least two different vocabulary
sizes of the respective domain-specific text corpus;

program instructions to receive the text-term;

program instructions to determine a domain-specificity
fingerprint of the text-term, wherein the domain-
specificity fingerprint comprises for each subword-
unit tokenizer a number of subword-units required to
represent the text-term; and

program instructions to provide the domain-specificity
fingerprint for determining the domain-specificity of
the text term.

16. The computer system of claim 15, wherein the text
term comprises words or multi-words.

17. The computer system of claim 15, wherein determin-
ing the domain-specificity fingerprint further comprises:

program instructions to assign the text term to one or more

domains of the respective set of subword-unit token-
izers that compute a minimum number of subword-
units required to represent the text-term with the small-
est vocabulary size.

18. The computer system of claim 15, the method further
comprising:

program instructions to determine the domain specificity

of the text term by analyzing a contour of the domain-
specificity fingerprint.

19. The computer system of claim 18, wherein the contour
comprises a value corresponding to a respective subword-
unit tokenizer of the domain at which a minimum number of
subword units required to encode the text term across all
domains and vocabulary sizes is reached.

20. The computer system of claim 18, wherein determin-
ing the domain specificity by analyzing the contour further
comprises:

program instructions to compute the maximum delta

between any pair of values in the contour; and

program instructions to assign the maximum delta as a

score for the domain-specificity of the text term.

#* #* #* #* #*

	Front Page
	Drawings
	Specification
	Claims

