

From Relation Extraction to Knowledge Graphs

Master Thesis Project – IC School

Diego Antognini

diegoantognini@gmail.com

Dr. Jean-Cédric Chappelier

Bernard Maccari

Current PhD Student (LIA)

EPFL Supervisor

Iprova Supervisor

Outline

- **1. Problem Statement**
- 2. Our Method
 - **Relation Classification Models**
 - Building Knowledge Graphs
- **3. Conclusion & Future Work**

Our Objectives

- 1. Given a sentence, extract concepts and find the relationship among them if such one exists. EEG measures brain activities
- 2. Given a corpus, build Knowledge Graphs of concepts, favoring precision over recall.
- What are concepts ?
- What are the relationships ?
- What are Knowledge Graphs ? Why use them ?
 ⇒ Come back later !

Concepts

Short phrases made of adjectives and nouns

- Gyroscope
- Rotational motion
- Brain electrical activity
- The new model S developed by Tesla X
- Galaxy S8 of Samsung X

Relations

Directed relations Iprova is interested in

Relation	Example			
Cause	Those cancers were caused by radiation exposures.			
Contain	My apartment has a large kitchen.			
Measure	EEG measures brain activities.			
Produce	A factory manufactures suits.			
Type0f	NoSQL databases such as MongoDB.			
Use	Bluetooth is used in audio equipment.			
Other	A misty ridge uprises from the surge.			

Relations

Directed relations Iprova is interested in

Relation	Example		
Cause	Those cancers were caused by radiation exposures.		
Contain	My apartment has a large kitchen.		
Measure	EEG measures brain activities.		
Produce	A factory manufactures suits.		
Type0f	NoSQL databases such as MongoDB.		
Use	Bluetooth is used in audio equipment.		
Other	A misty ridge uprises from the surge.		

2 First Approaches

1. Relation Extraction

- Named entities (Location, Organization, Person, etc.)
- Specified relations (e.g. CoFounder, BornIn)
- Need a lot of data
- 2. Open Information Extraction
 - Named entities/nominals (nouns/base noun phrases)
 - No specified relations

 \Rightarrow find a mapping to "ontology"

e.g. was included in \Rightarrow Contain(e2,e1)

Problem Statement – Our Method – Conclusion & Future Work

Relation/Open Information Extraction

	RE	Open IE		
Input	Sentences + Labeled relations	Sentences		
Relation	Specified relations in advance	Free discovery		
Extractor	xtractor Specified relations Independen			

Image from Vo and Bagheri, 2016

Chosen approach

- 3. Relation Classification
 - Specified relations
 - Named entities/Nominals/Concepts
 - These are given with the sentence
 - How to find concepts ?
 ⇒ Using existing concept extraction system
 (ADJ)* (NOUN)+

Our Method

Relation Classification Models Building Knowledge Graphs

Relation Classification

Input: The [factory]_{e1}'s products have included flower pots, Finnish rooster-whistles, pans, [trays]_{e2}, tea pots, ash trays and air moisturisers.

Output:

The directed relationship among factory and trays
 ⇒ Produce(factory, trays)

Developed models

- 2 Models for Relation Classification Task:
 - CR-CNN: Convolutional neural networks
 - BRCNN: Recurrent & Convolutional neural networks
- These have been shown to be efficient architecture for RC

Model 1: CR-CNN

- State of the art for 2015
- Convolutional Neural Network
- Simple features: word embeddings and relative distance
- Omit "Other" class embeddings
 - Pairwise ranking loss function

$$L = log(1 + exp(\gamma(m^+ - s_{\theta}(x)_{y^+})))$$

$$+ \log(1 + exp(\gamma(m^- + s_{\theta}(x)_{c^-})))$$

Model 2: BR-CNN

- State of the art since 2016
- Bi-Recurrent Convolutional Neural Network
- Use shortest dependency path
- **BRCNN₁** Word embeddings, dependency tag embeddings
- **BRCNN₂ POS** tags, NER tags and WordNet hypernyms
 - Training objective: cross entropy

$$J(x_i) = -\sum_{i=1}^{2K+1} \overrightarrow{t}_i \log \overrightarrow{y}_i - \sum_{i=1}^{2K+1} \overleftarrow{t}_i \log \overleftarrow{y}_i - \sum_{i=1}^{K+1} t_i \log y_i$$

Problem Statement – Our Method (Relation Classification Models) – Conclusion & Future Work

Shortest Dependency Path

Shortest Dependency Path

Problem Statement – Our Method (Relation Classification Models) – Conclusion & Future Work

LSTM = Long Short Term Memory

Model 2: BR-CNN

Experiments

- Run on the 3 datasets 5 times (mean + stdev)
- Compute macro F₁-Score excluding class Other
- Tune on validation set and evaluate on test set
- Comparison with 3 baselines
 - UTD: Support Vector Machine with lexical features
 - SPTree: bi-Recurrent Neural Networks
 - DRNN: deep Recurrent Neural Networks

Datasets

1. SemEval-2010 Task 8

- Established benchmark for Relation Classification
- Most of the sentences are either short or average
- 2x9 relations + 1 Other \Rightarrow **19 relations**
- 2. **KBP37**
 - Named entities
 - Longer sentences
 - 2x18 relations + 1 Other \Rightarrow 37 relations

Datasets

3. **IP**

- Training set partially based on SemEval-2007/2010
- Manually gathered sentences from various websites & manual searches on the Internet
- Most of the sentences are either short or average
- Relations of interest for Iprova 2x6 relations + 1 Other \Rightarrow 13 relations

Best on all

Problem Statement – Our Method (Relation Classification Models) – Conclusion & Future Work

Improvements

Gum disease rates were highest in $[males]_{e_1}$, Mexican Americans, adults with less than a high school education, adults below the $[poverty line]_{e_2}$ and current smokers.

Data augmentation

• Replace some words with neighbors in Word2Vec space

Gum infection rates were highest in $[males]_{e_1}$, Peruvian Americans, adults with less than a juniorsenior school education, adults below the $[poverty line]_{e_2}$ and former nonsmokers.

Negative Sampling

- Assign tags $[]_{e1}$, $[]_{e2}$ to other words

Gum disease rates were highest in males, Mexican Americans, adults with less than a high school education, $[adults]_{e_1}$ below the poverty line and current $[smokers]_{e_2}$.

Problem Statement – Our Method (Relation Classification Models) – Conclusion & Future Work

Recap

- Incorporating linguistic information in network's architecture is still important and beneficial
- Data Augmentation & Negative Sampling techniques help to strengthen classifiers
- BRCNN₂+DA+NS outperforms all models on Sem & KBP
- BRCNN₂+DA outperforms all models on IP dataset
 ⇒ Will be used to build Knowledge Graphs

Our Method

Relation Classification Models Building Knowledge Graphs

What: structured representation of semantic knowledge
 and relations among nodes
 Relation1
 Concept2
 Concept1
 Relation2
 Concept3

basis for a Question-Answering system, etc.

- What: structured representation of semantic knowledge
 and relations among nodes
 Relation1
 Concept2
 Concept1
 Relation2
 Concept3
- Why: model domains of interest, infer new relations, basis for a Question-Answering system, etc.

Car

What: structured representation of semantic knowledge
 and relations among nodes
 Use
 Driver

Contain

GPS

 Why: model domains of interest, infer new relations, basis for a Question-Answering system, etc.

Car

What: structured representation of semantic knowledge
 and relations among nodes
 Use
 Driver
 Use?

Contain

GPS

 Why: model domains of interest, infer new relations, basis for a Question-Answering system, etc.

Car

What: structured representation of semantic knowledge
 and relations among nodes
 Use
 Driver
 Use?

Contain

GPS

- Why: model domains of interest, infer new relations, basis for a Question-Answering system, etc.
- How:
 - Extracting pairs of concepts from large corpora
 - Infer relations with best model on IP dataset: BRCNN₂+DA

Stanford's tools

Iprova's concept extracter

- At least 2 sentences
- Concepts not too far away
- Containing both concepts
 A concept might be part of
 bigger concept e.g.
 diabetes ∈ type 2 diabetes
 schedule ∈ rotating schedule

Using model BRCNN2+DA >

What if R1(Concept1, Concept2) & R2(Concept1, Concept2) ?

Processing

0

Inferring relations

Aggregating predictions

⇒ Aggregate probability distribution vectors by class-label

Pair	Conf. R1	Conf. R2	Conf. R3	Median				
(c1,c2)	0.5	0.3	0.2		Pair	Conf. R1	Conf. R2	Conf. R3
(c1,c2)	0.8	0.2	0.0		(c1,c2)	0.5	0.2	0.2
(c1,c2)	0.2	0.1	0.7					

Post-Processing

- Goal: filter out noise
- Parameters: free to setup during visualization by Iprova
- Optimizing parameters and confidence thresholds
- Confidence Thresholds
 Confidence threshold for each class
 - >= threshold \Rightarrow keep relation
 - < threshold \Rightarrow Other

Qualtitative Evaluation

- Build representative Knowledge Graphs from 3 corpora with and without confidence thresholds (CT)
- Manually assess quality of the predictions on 2% of each KG
- Classify each sample in one of the four classes:
 - 1. Makes sense, e.g. Contain(car, wheels)
 - 2. Reversed direction, e.g. Contain(wheels, car)
 - 3. Might make sense, e.g. Use(racing, drivers)
 - 4. Nonsense, e.g. TypeOf(neck, tail)

Corpora

- 1. Common Crawl
 - based on ScienceDaily and Phys.org
 - ~20 millions sentences
- 2. Autonomous Vehicles documents
 - ~ $^{1}/_{2}$ million sentences
- 3. Air Purifier documents
 - ~1 million sentences

High precision

High precision

Limitations

- Potential overlaps among relations
 e.g. Use(laptop, processor) & Contain(laptop, processor)
- Delimitation of the relations
 e.g. Contain(mouse, genes)
- Mixture of semantic meanings

 e.g. Contain(mouse, brain) & TypeOf(mouse, device)
- Hypothetic relations
 - e.g. Contain(artery, clot)

Conclusion & Future Work

Conclusion

- State of the art model for Relation Classification task
 - Linguistic information features and +/- sampling help !
- Create a dataset fitting Iprova's needs and build KGs
 - Precision not high enough yet
 - Has some limitations
 - Can be used as an help for humans
- This kind of Knowledge Graphs doesn't exist
 ⇒ We provide a tool to model domains of interest

Problem Statement – Our Method – Conclusion & Future Work

Future Work

- Inferring new relations by using prior knowledge from KG
- Training pair-words embeddings
- Use pairwise ranking loss function
- Better filtering for Knowledge Graphs
- Improve concept extraction system

Questions?