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Abstract

The website http://www.gokera.ch proposes a list of events in the French-speaking

part of Switzerland. Its purpose is to recommend events for users taking into account

the ratings of other events. In this project, we are interested only in event ratings and

use a hybrid recommendation system based on two approaches which mixes the user

similarity and the decomposition of a product in features (collaborative filtering and

content-based). In the case where we do not have user’s data it is impossible to realize

an efficient recommendation. It is the reason why we experiment the add of a social

dimension based on Facebook. The addition of this social dimension allowed us to get

information of the user related with our features found during the event analysis process

and this gave us the possibility to recommend events even if the rating history is empty.

In a general way, the system works but has to be adjusted to run on a production

environment, especially the text analysis. As for the pertinence of the recommended

events, we cannot device for sure because we do not have some set of data for testing

but we will have some during the challenge ESWC-14 Challenge: Linked Open Data-

enabled Recommender Systems1.

Le site web http://www.gokera.ch propose une liste d’événements en Suisse romande.

Le but de ce site est de recommender des événements aux utilisateurs en prenant en

compte leurs évaluations effectuées sur d’autres événements. Dans le cadre de ce pro-

jet, nous nous intéressons à la recommendation d’événements et utilisons un sysème

de recommendation hybride basé sur deux approches mélangeant la similaritude entre

utilisateurs et la décomposition d’un produit en feature (collaborative filtering et content-

based). Dans le cas où nous n’avons aucune données, il nous est impossible d’effectuer

une recommendation efficace. C’est pour cette raison que nous expérimentons l’ajout

d’une dimension sociale basée sur Facebook. L’ajout de cette dimension sociale nous

a permis de récupérer des informations sur l’utilisateur en relation avec nos features

trouvées lors de l’analyse d’événement, ce qui a pu amener à des recommandations

d’événements, même si l’historique d’évaluation est vide. D’une manière globale, le

système fonctionne mais doit subir quelques ajustements pour être placé dans un en-

vironnement de production, notamment l’analyse textuelle. Quant à la pertinance des

événements recommendés, nous ne pouvons pas encore nous prononcer en raison de

jeux de données que nous aurons lors du concours ESWC-14 Challenge: Linked Open

Data-enabled Recommender Systems2.

1More information on http://2014.eswc-conferences.org/important-dates/call-RecSys.
2Plus d’informations sur http://2014.eswc-conferences.org/important-dates/call-RecSys.
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Chapter 1

Introduction

1.1 Context

The recommendation system is used in the domain of the online sales platforms. The

purpose is to suggest to the visitor a product which might interest him for a purchase.

For this, they collect all the possible data they can when a customer is visiting their

platform : the products viewed, the ratings and opinions consulted, the purchases and

their ratings etc. The final purpose is to find in away to take into consideration all this

data and find products that might interest the customer and for that, we use recom-

mendation systems. There are several kind but all of them have some advantages and

disadvantages. To improve the quality of a recommendation, we can mix several of them

in order to fill their weaknesses.

The website http://www.gokera.ch contains events in the French-speaking part of

Switzerland in a various field of a category. The present purpose is to recommend

events to the user depending on his rating (”I like, I dislike”) on other events in which

he has participated. Finally, it would be possible to recommend events for a group of

users, taking into account the ratings of each user. The producers can create events and

have to link it to a category among several proposed.

1.2 Goal

The objectives of this project is to realize a hybrid recommendation system mixing the

collaborative filtering and the content-based approaches and try to fix their weaknesses

with the social dimension. The recommendation will be only focus on a single user.

Moreover, to try to fill their weakness we will take into consideration the Facebook pro-

file.

First, we have to create a simply prototype of a website that will contain all the events

in Gokera. Then we will realize a features extraction system for the events and the

Facebook profiles. Finally, we have to implement an hybrid recommendation system in

which we integrate the social part.

1
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Chapter 1. Introduction 2

Figure 1.1: Main page of the website Gokera

1.3 Our proposal

In this project, we experiment with a hybrid recommendation using two approaches :

the collaborative filtering and the content-based. The pros and cons of some existing

recommended systems in which we are interested and the one we use as a basis is de-

scribed in chapter 2. All the next chapters include our proposal.

The chapter 3 talks about the event analysis. We find why this step is important,

how the description and the website is analyzed, why their analysis is different, what

we focus our attention on and why and finally how we compute the importance of a word.

The kind of hybrid recommendation system we use has still a weakness so we experiment

a way to fill it with the add of a social dimension from Facebook. We take into account

the user’s profile and those of his friends. All the details about the user’s activity, the

features extractions and their weight are described in chapter 4.

At this stage we have all the user’s features and all the events’ features, we use our

hybrid recommendation system, which takes into account the Facebook profiles to find

the products which might interest the customer. The whole system is stated in chapter 5.

The chapter 6 contains all the conception part : the database, the architecture, the

class diagram and the performances. It is followed by the problems encountered. To

end up, we compare the initial planning with the final one and highlight the differences

between them in order to have better estimation for the next project.

At the end of the document, in chapter 9, we analyze the different results we have

obtained in purpose to give some leads to improve this project.



Chapter 2

Existing recommendation systems

Recommendation systems are mechanisms which will propose to the user some products

that might interest him. It will be realized on the basis of the user’s predictions based

on his consumption history (either purchases, ratings or searches).

In this project, the consumption history will be based on event rating like Facebook

with ”I Like” and ”I Dislike” actions. There are several approaches like collaborative

filtering, content-based, demographic, utility-based and knowledge-based [1]. Only the

first two are presented in a simplified way because there are the most popular.1

2.1 Collaborative filtering

The system that uses the collaborative filtering is focused on similarities among users

and products. Several versions of this approach exist but only the memory-based is

presented here.

The idea is that for having a good recommendation, we must find other persons having

similar tastes than the user has, in order to propose to him products that might interest

him. So we are in a system where users depend on each other.

We can identify some weaknesses, mainly the user’s activity. To have the most effi-

cient system, the user must be active rating a maximum of products so that we could

determine the most accurate profile. Another major problem is when a product is added,

as long as nobody has rated it, it will be never recommended to other users. Finally,

in the case where the user have some special tastes, the recommended products will be

only slightly targeted [3]. This is mainly due to the lack of product decomposition in

features.

1For more information, we invite the curious reader to read the article [2].

3



Chapter 2. Existing recommendation systems 4

2.2 Content-based filtering

The content-based filtering approach is focused on the products decomposition in fea-

tures. Through these features, we can define the similarity among the products. When

a user consumes one, he will rate it in a certain way, all the features related with the

product. This will allow the system to suggest to him other products with similar fea-

tures, contrary to the collaborative filtering approach, the user is independent from the

others.

The inconvenience of this approach is that we will face the problem of over-specialization

because the user will see only the products which are similar to those already rated and

so, he will not have the occasion to discover some other ranges of products [3].

2.3 Hybrid Recommender Systems

This last approach consists in a combination of several recommendation systems in or-

der to solve their inconveniences and get better performances. Different versions exist

like weighted, switching, mixed, feature combination, cascade, feature augmentation and

meta-level [1]. Only the first one is presented.

The weighted approach combines the collaborative filtering system and content-based

system. This combination allows to get better results because we combine the products

rating of the user and all the features related as well as similar tastes of users. So the

purpose is to find a way to take into consideration the features that the user likes spe-

cially and those of the similar users.

In order to recommend products in a suitable way which could contain some features

liked by the user and some others a little less, we will assign a weight to each one of

those. This will allow improvement in the accuracy of the recommendation system and

satisfy the problem of the particular tastes and the over-specialization. Moreover this

combination solves the visibility problem of the new products added.

Unfortunately, to combine two systems having the same defects will not correct them so

the problem of the new user and his activity is still present.

To correct this last defect we could try to add a new dimension to this recommendation

: the social dimension. The chapter 4 is dedicated to it.



Chapter 3

Event analysis

The event analysis is one of the most important part even the most. It is the main core

of the recommendation because if its quality is bad, the recommended products will not

be targeted, no matter what the user’s activity. The event analysis is essentially based

on the events available on http://www.gokera.ch, of the 18th of December 2013. Some

examples of events and some of their attributes are showed at the Table 3.1.

Table 3.1: Some examples of events with some attributes

object id 2284 2644 5568
name Foire de Brent Bretaye By Night Bowling Challenge
website None None http://www.villars.ch

price 0.0 65.0 5.0
# views 7 4 6
# likes 0 0 0
# dislikes 0 0 0
start date 10/01/2014 10/01/2014 10/01/2014
description La Foire ... Venez passer ... Tournoi de bowling ...
category Marché/Brocante Rencontres/Animation Sport

3.1 Corpus

Let’s start by defining a corpus in the linguistic domain, Wikipedia has a good one1 :

A corpus is a large and structured set of texts. They are used to do

statistical analysis and hypothesis testing, checking occurrences or validating

linguistic rules within a specific language territory. A corpus may contain

texts in a single language (monolingual corpus) or text data in multiple

languages (multilingual corpus).

1The citation is from https://en.wikipedia.org/wiki/Text_corpus.
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For each event we have a description and/or a website. At this time where we are writing

this line, we have a total of 3140 events. Among them, we already have 798 (25,41%)

which don’t have neither a description nor a website. Unfortunately for those, we cannot

do anything, so they won’t ever be recommended.

One needs to know in this project is we interest only in French texts. Although there

could be some descriptions in another language, those will be ignored. With regard to

the websites, we are interested also only in French content. In our case, the corpus is

monolingual. In order to clarify, I define the terminology ”document” which can contain

several texts, because the set of all the texts from a website is grouped in one single

document.

So our corpus has a set of documents which represents a description or the content

of a website for an event. But those are not added directly in our corpus because they

must be preprocessed.

3.2 Preprocessing

Before giving the document to the text analyzer, some verifications have to be done.

3.2.1 Language detection

The language detection tool used is based on calculus and frequency comparison of pro-

files of N-gram. The system used is small, fast and robust and is tolerant of textual

errors [4]. As stated before, we are interested exclusively in the French language. Of

course, the longer is the text, the more accurate is the language detection. Accord-

ing to some testings, the tool is reliable as we have a small number of words if they are

not outstanding. In the case where a word is special, it is preferable to have a longer text.

It is possible to have several languages inside a text, for example in the case where

the word has an English connotation inside a French text or simply a literal translation.

Moreover, the more elements in French there are, more chance we have to detect the

French language. Having words in another language does not degrade the quality of the

analysis because their origins will not be found and so they will be ignored.

3.2.2 Description

A description is accepted as a document if and only if it is not empty and it is recognized

like a French text. There is no more extra operations to realize.



Chapter 3. Event analysis 7

3.2.3 Website

The website analysis has to be done in a rigorous way. First we have to define the HTML

tags in which we interest in. The Table 3.2 shows those we have kept as well as the

reason.

Table 3.2: HTML tags kept in which we are interested in their content

Tag Remark

<div>,<p> Contains in a general way texts.
<h*> Represents a title, considered the most important element.
<li> Often used for the menus. We can find into important elements.

<em>, <i>, <b> To highlight a particular word.

For the second step, if we make the hypothesis that the website url points at the root,

we can wonder ”Is only one page sufficient ?”. The answer is clearly no for the following

reasons :

We can arrive at a page which contains:

• Only advertisings and a link which allows us to go to the desired content. It is not

pertinent;

• A language menu, in this case except for the languages themselves, there is no

content;

• Contents in another language but propose to switch the language with a tab,

generally in a corner. The current content is not interesting because it is not in

French.

Although most websites are not concerned, we have to maximize our chances to parse

the content of documents which could represent an event and so, find a solution.

Before proposing a solution, the Figure 3.1 is a representation of a website. In this

illustration, a particular website has been decomposed in all of its links (that point to a

textual resource) as a directed graph (that can be connected in certain cases). Links rep-

resented with orange circles are links which point out the domain (in nearly all the cases,

this breaks the connectivity property) whereas those in white point at internal resources.

To start, we consider it is extremely important to keep only links that point at the

same domain and at textual content (an easy way to find it is to use the field content-

type of the HTTP2). This is for two reasons : the first, the pertinence of the information

will diverge and secondly, if depth→∞, we will visit the entire web. All the while taking

into account the last remark, if we restrain ourself to stay in the same domain, even if

2For more information, you can consult the specification of the protocol HTTP, http://www.w3.org/
Protocols/HTTP/1.1/draft-ietf-http-v11-spec-01.html.

http://www.w3.org/Protocols/HTTP/1.1/draft-ietf-http-v11-spec-01.html
http://www.w3.org/Protocols/HTTP/1.1/draft-ietf-http-v11-spec-01.html
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Figure 3.1: Representation of the website http://www.cartor.ch as a directed graph

depth→∞, we will have, anyway, a finite set of urls.

The next step consists in transforming all relative links (generally those which stay

in the same domain) in absolute links. We have to be careful how a link is represented :

Let xxx, an existent website page. It can be represented as the following forms :

1. xxx or ./xxx, in this case we have to add xxx to the parent;

2. ../xxx, we have to add xxx to the grandparent. Be careful if there are some ”..”;

3. /xxx, the page is at the same level as root.

Second to last step concerns the url rewriting and the parameters GET. For the first,

the main problem is :

Let the /xxx, is it a file or is it a folder which points in its own index ?

Unfortunately, there is no way to know it without doing a query to the server. If we

send a query to the server, we will know explicitly if it is a folder because it will be

represented by the format /xxx/ or by /xxx if it is simply a file.

For the second one, if we observe again the Figure 3.1, we are aware there are two

pages grouped : /newList and /newList/?mod=1. In some cases, the content of the

different pages can be the same but in this precise case, it is not. In this example,

http://www.cartor.ch


Chapter 3. Event analysis 9

the difference is not flagrant but we might have an url like ”/display?id=x” or ”/dis-

play?include=xxx” in which their content change radically according to the parameter.

So the solution is to keep those parameters. Concerning the anchors (the symbole #

in the urls), they must be removed in order to clean the url and because they do not

contain significant information.

Now we have the links which point at the same domain and at textual content. But

there is still a problem : if we want to parse all the website until a specified depth,

we will end in an infinite loop, extracting the urls of the same pages and revisit them

again. In order to converge at a finite set of urls, we have to store each visited url, after

”cleaning” them (remove the anchors, put the ”/” if it is a folder, etc.).

To finish, we have to create an hash table in which the hash function is defined such as

h(x) = x. With this method, we solve the problem and have a list of urls but they are

not unique. Because if we have /newList/ and further another /newList/index, we have

no chance to know that /newList/ redirects into the index page (defined in the server

configuration) and inversely, from /newList/index we cannot know it is the index page

for the folder /newList/. So unfortunately, we have to accept a slight redundancy but

in generally they are special cases.

Another alternative would be to hash the content of each page, store their hashes and

compare them with the others. The disadvantage of this technique is that we have to

get the content of all visited pages and this operation is usually slow. Moreover, it is

not perfect because if a page contains some dynamic content (current time, time of gen-

eration, some advertisements, etc.), the product hash will not be the same. For those

reasons, we have preferred to keep the first solution.

3.2.4 To add to the corpus

At this stage, we have descriptions as well as the content of the website that can be

added to the corpus. But before adding them, we analyze their textual content to re-

move some parts of it, in order to decrease noisy text and so to improve the reliability.

The parts to remove are essentially the symbols, punctuations, sentence tags and all

the unknown words.

Here is an example of non desired content : . # ! ... ? + ” * % & / ( ) ; :

3.3 Text analysis

We have a corpus which contains the set of documents related to each event. At this step,

we have to find the most important words for an event, mix them between the description

and the website if necessary, in order to extract our features for the recommendation.
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Several ways exist for this but we have opted for the approach (tf-idf). There are some

existing different implementations but we have chosen this proposed at the reference [5].

3.3.1 Tf-idf

Tf-idf is a statistical method which allows to calculate the importance of a world inside

a document inside a corpus. It is decomposed in two parts : the frequency calculus of

a term and this for the inverse document frequency. The (tf-idf) is the multiplication

between the two intermediate results.

To compute the frequency, we use the Equation 3.1 :

tfij =
ni,j∑
nk,j

(3.1)

Where ni,j is the number of occurrences of the term ti in the document dj and
∑

nk,j

the total number of occurrences of all terms in the document dj .

For the inverse document frequency, we calculate it with the Equation 3.2

idfi =
log |D|

|{d : ti ∈ d}|
(3.2)

Where |D| is the total number of documents within the corpus and |{d : ti ∈ d}| the

number of documents which contains the term ti.

To finish, (tf-idf) is defined with the Equation 3.3

(tf-idf)ij = tfij × idfi (3.3)

3.3.2 Features extraction

We have now all the necessary tools for the features extraction for the events. Before

computing them, we have to define the terms to take into consideration3. We have

decided keep only the nouns and the proper names. In a general way, the rest is not

pertinent. The only case where we could hesitate would be this of the adjectives. Let’s

take the following example :

The little catholic church in the village has been painted in red.

In this example, we can note that the adjective ”catholic” could be interesting but not

”little”. The case where adjectives could be taken into consideration is quite rare and

as we cannot distinguish which of those are pertinent with this methods, we do not keep

them.

3The full list of the different kind of words is available on http://www.ims.uni-stuttgart.de/

institut/mitarbeiter/schmid/french-tagset.html.

http://www.ims.uni-stuttgart.de/institut/mitarbeiter/schmid/french-tagset.html
http://www.ims.uni-stuttgart.de/institut/mitarbeiter/schmid/french-tagset.html
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Once the importance of all terms of an event is computed, we have to keep the k, k ∈ N∗

most important. For this, we sort them in ascending order by frequency. The smaller

the frequency is, the rarer is the term and so, more important. In the case where the

feature is found in the description and in the website content, we keep only the feature

with the highest idf .

At the moment, we add at the corpus the description and the website content if present.

In fact, this affirmation is slightly false. We have opted for an approach which defines

that if we already have k or higher key words within the description, we will not take

those of the website. On the other hand we add the set of key words of the website.

This approach highlights the description but has for consequence to create a side effect

because if we have exactly k − 1 key words in the description, we have high chances (if

the website is not in French and it has some contents) to decrease the quality of the

features of the event due to a high likelihood to add a large content.

The other imagined way was to define a function which returns the number of words to

fetch in the website during the parsing, in order to gain time. It would have a similar

form than this proposed in 3.4 :

f(Wi) =
maxD

Wi
+ D̄ (3.4)

Where D is the set of descriptions (in key words), W is the entire text of the website

and i the event.

This approach was dropped because when we realized some statistics (with 5180 events

at this time), Figure 3.2, we had noticed that in a general way, the content of the de-

scriptions is poor (length generally low) and the average was at 7, 59 key words per

event. Moreover, the maximum key words extracted was at 84. This is the reason why

we didn’t keep this approach and we think that the first one is more adapted at this

situation.

Other interesting information we have drawn from those statistics :

• 66, 91% of the descriptions (2101) are in French;

• Over the 1873 specified websites, only 95, 46% of them (1788) are exploitable

(valid), independently of the language;

• Among the 95, 46% of websites, 54, 44% (974) have some French contents with

depth at 1;

• Altogether, there are 27, 68% of events (869) which have a description and a website

with French content.

By adapting those statistics without the empty events, we have respectively : 89, 7%

(French descriptions), 76, 35% (valid website with French contents) and 37, 11% (de-

scription and website with French contents).
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Figure 3.2: Histogram of the number of key words in the description, per event.

If we interest in key words extraction, we could say that the average of key words

extracted in the description is 10, 88 and if we add the website content with a recursion

defined at 1, we have an average of 367, 68. So, we are aware of the content of a website

is not negligible.

To finish, we define one or two extra features that those extracted. They are from the

category of the event and some of them have two categories. In total, the number of

features of an event is in the domain [1; k + 2].

For the recommendation, we know where the feature is from and we apply a factor

to it, on its (tf-idf) in order to weight their origin (description, website or category).



Chapter 4

Facebook analysis

Nowadays the social network Facebook is used by many people over the world. It contains

a lot of information about their users and it is for this reason that we have considered

it could be interesting to include this social dimension in our recommendation system.

4.1 Social dimension

The hybrid approach of the recommendation system used in this project, described in

chapter 5, let’s appear a not very reliable recommendation when it is a new user or when

he is not active. If this kind of users has not still rated events stored in our database, it

would be impossible to establish an efficient recommendation.

To satisfy this problem, we collect the Facebook profile of the user and look for elements

which the user interests in. We have defined the area of research will be centralized on

the groups and fan pages, liked by the user.

4.2 Facebook Graph API - Facebook Query Language

Facebook makes available to developers the Graph API which allows to have access to

the user’s data and his friends’ data. We can access it in two ways : with GET/POST

or with their language FQL1. The second one has been chosen because it allows to create

more accurate queries and offers the possibility to mix several queries inside one.

We must consider that the user can define the privacy settings on his data and that

Facebook imposes some limitations on their Graph API, for example the access to the

user’s friends list. The Figure 4.1 shows the principle.

1More information about these methods on https://developers.facebook.com/docs/graph-api/

reference/ and https://developers.facebook.com/docs/reference/fql/.
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Figure 4.1: Representation of a query processing with the privacy settings on Facebook
Graph API. The method used is with GET but it has the same behavior with FQL.

Source : https://developers.facebook.com/blog/post/478/.

To define the permissions we need, we have to create a Facebook application in which

we precisely state what we want to access. Afterwards, when the user will be connected

to it, Facebook will ask him to accept that the application has an access to his data

we have defined. If he accepts, we will be able to generate a token that we will send

to Facebook when we will submit queries2. Otherwise, the social dimension will not be

taken into consideration for the recommendation.

4.3 Fetching data from a Facebook user

First we collect the current user’s profile and his friends’ profiles. We interest in his

friends too because if the user is not very active, the defect of the recommendation

system will be still present. So we fetch also his friends’ data because there is a high

likelihood that the current user has at least one friend who has a strong activity.

For each profile (friends and current user), we interest in groups and fan pages liked

and we extract the related features in the same way in the chapter 3. Then, we focus

only to the friends who have the same features we have defined thanks to the events

analysis. With a real profile of Facebook, we have obtained 29, 08% features related

(1526 over 5248). Among these, we have to take into account that some features are

insignificant.

2A global view of permissions is available on https://developers.facebook.com/docs/reference/

login/#permissions. For more information about the permissions by field, you can consult the following
link https://developers.facebook.com/docs/reference/fql/.

https://developers.facebook.com/blog/post/478/
https://developers.facebook.com/docs/reference/login/#permissions
https://developers.facebook.com/docs/reference/login/#permissions
https://developers.facebook.com/docs/reference/fql/
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Even if we have a good correlation with the features found, we have a lot of noise. To

improve the quality of the features extraction, we can add a synonym dictionary for all

the features we have defined and use it to extend the area of relation detection between

a word and a feature. With this additional system, we will obtain a more efficient addi-

tional system but unfortunately we could not try this system due to a lack of time.

At this step, we cannot keep the features of all friends because the main target is the

current user. We define the k most active friends. To compute the activity of a user, we

refer to all of his posts written by the user. We fetch only the posts on the user’s wall

because it’s not possible to have access to the messages posted in another wall (friends

or others). To calculate the most accurate activity we fetch all the posts which can be an

accepted friend request, a page/group he likes, an announce of his relationship, simply

a message etc.

To estimate the activity, we start calculating the average of the intervals between each

post, from the date of the first one to the current date, with the Equation 4.1 :

X =
today − first activity

|Messages|
(4.1)

Where today and first activity are dates represented by the format timestamp (number

of seconds since the 1st of January 1970) and |Messages| the total number of messages.

Then, we calculate the absolute deviation by month with the Equation 4.2 :

em =
1

n

n∑
i=0

|Xi −X| (4.2)

Where n, n ∈ N∗ represents the number of months since the first activity, Xi the av-

erage of the user i and X the average of the averages of the intervals among friends’ posts.

We keep only the k, k ∈ N∗ friends with the smallest em. Then we sort them in as-

cending order because we are interested in the most active friends, so the smallest time

between each post (em).

Finally, we assign the weight of the user’s features at 1.0 and for his friends’ features,

according to the Equations 4.3 and 4.4 :

Xk = {Xi : 0 ≤ i ≤ k} (4.3)

Weight(f) =
Xf

max{Xk}
(4.4)

Where Xf is the average of the intervals between each friend’s post and Xk is the set

of the average of averages of the k most active friends. Finally, the weight is defined by

the normalizations of Xf by max{Xk}.



Chapter 5

Social recommendation system

As stated before, it exists several recommendation systems and we are interested in the

approaches collaborative filtering and the content based. The first is based on similar-

ities among users and the second on the decomposition in features of a product. If we

mix those systems, we fix nearly all their weaknesses but it remains still one : if a user is

new or inactive, the recommended products will not be targeted. This is the reason why

we experiment to integrate the social dimension described in chapter 4. The approach

described below is widely inspired by the reference [2].

The methodology we use is the following :

• To create the basic matrices related to the user’s rating, features of products and

user’s features from Facebook;

• To compute the user-feature matrix;

• To calculate the feature frequency, user frequency, inverse user frequency and fi-

nally the weighted user-feature matrix;

• To compute the user similarity matrix;

• To find the k nearest neighbors for a particular user.

Before detailing each step, let’s define U the set of users, F the set of features and E
the domain of events. To simplify the example of our approach, we define that |U| =

3, |F| = 5, |E| = 5 but in fact, we have |F| = 5248 and |E| = 3140.

5.1 Basic matrices

Those 3 matrices are trivial to define because there is no calculation. The only thing

to do is to get the information and fill them up. The user-event matrix R has a size

of |U| × |E|, Table 5.1. In our case, if there is a rating, its value is in the domain

{x : 0 < x < 6, x ∈ N}.
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E1 E2 E3 E4 E5
U1 1 2 4 5 3

U2 3 2 5 - -

U3 1 4 - - 3

Table 5.1: Matrix R, user-event

The event-feature matrix F has a size of |E| × |F|, Table 5.2. The features are weighted

and the value is in the domain ]0; 1] (more details in chapter 3.3.1) but it could be higher

if we decide that the feature from a website or description should be more important

and use a factor.

F1 F2 F3 F4 F5

E1 0.2 - 0.8 - -

E2 - 0.8 1 - 0.3

E3 1 - 0.3 - -

E4 - 0.2 - 0.4 -

E5 - - - 0.8 -

Table 5.2: Matrix F, event-feature

The social user-feature matrix S has a size of |U| × |F|, Table 5.3. The features are

weighted and the value is in the domain ]0; 1]. More details in chapter 4.3.

F1 F2 F3 F4 F5

U1 0 0.4 0 0.8 0.3

U2 1 0 0.5 0 0

U3 0 0.2 0 0 0.6

Table 5.3: Matrix S, user-feature Facebook

5.2 User-feature matrix

With the matrices R and F, we are able to compute the correlation between a user and

a feature. We take into account only ratings greater than Pt in where Pt ∈ N∗. The

user-feature matrix P has a size of |U| × |F|, Table 5.4, and is defined by the Equation

5.1 :

P (u, f) =
∑

∀R(u,e)>Pt

F (e, f) (5.1)

where u ∈ U , e ∈ E . In our case, we define Pt = 2.
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F1 F2 F3 F4 F5

U1 1 0.2 0.3 1.2 0

U2 1.2 0 1.1 0 0

U3 0 0.8 1 0.8 0.3

Table 5.4: Matrix P, user-feature from events

5.3 Weighted user-feature matrix

Actually, with the matrix P we know only the features related to an event rated by a

user. We do not take account the rating of the user and this is the reason why we have

to compute the feature frequency, user frequency and inverse user frequency matrix to

find the features which better describe a user and those which better distinguish him

from the others.

The feature frequency matrix FF is the total weight to which a user u has an inter-

est, the features from the event and Facebook. Remember, a user u and a feature f

are correlated if and only if P (u, f) > Pt. Those from Facebook are all taken into con-

sideration. FF has a size of |U| × |F|, Table 5.5, and is defined by the Equation 5.2

:

FF (u, f) = k1 · P (u, f) + k2 · S(u, f) (5.2)

where u ∈ U , e ∈ E and k1, k2 ∈ R∗. k1 and k2 are factors to point out which feature

weight is more important. In our case, k1 = k2 = 1.

F1 F2 F3 F4 F5

U1 1 0.6 0.3 2.0 0.3

U2 2.2 0 1.6 0 0

U3 0 1.0 1 0.8 0.9

Table 5.5: Matrix FF, feature frequency

The user frequency matrix UF is the number of users in which the feature f occurs at

least once. It has a size of 1× |F|, Table 5.6.

F1 F2 F3 F4 F5∑
u 2 2 3 2 2

Table 5.6: Matrix UF, user frequency

We can compute the inverse user frequency matrix UIF which has a size of 1×|F|, Table

5.7. It will define the feature regarding the number of users who has rated it. Higher is

this number, lower is the importance. UIF is defined by the Equation 5.3 :

IUF (f) = log10
|U|

UF (f)
(5.3)

where |U| is the total number of user and f ∈ F .
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F1 F2 F3 F4 F5∑
u 0.176 0.176 0.0 0.176 0.176

Table 5.7: Matrix IUF, inverse user frequency

Finally, we have all the information to calculate the weighted feature matrix W, which

has a size of |U| × |F|, Table 5.8. This will allow us to find the features which better

describe a user u and those which better distinguish him from the others. W is defined

by the Equation 5.4 :

W (u, f) = FF (u, f) ∗ IUF (f) (5.4)

where u ∈ U , f ∈ F .

F1 F2 F3 F4 F5

U1 0.176 0.106 - 0.352 0.0528

U2 0.387 - - - -

U3 - 0.176 - 0.141 0.158

Table 5.8: Matrix W, feature weight matrix

5.4 User similarity matrix

At this stage, only the content-based part has be done and now we have to determine the

similarities among users (the collaborative filtering part). For this, we use the cosine-

based approach which define the similarity between 2 users (u, v) and a feature f ∈ X .

The symmetric user-user matrix UU has a size of |U| × |U|, Table 5.9, and is defined by

the Equation 5.5 :

UU(u, v) =

∑
∀f∈X

W (u, f)W (v, f)√ ∑
∀f∈X

W (u, f)2
√ ∑
∀f∈X

W (v, f)2
,X = Fu ∩ Fv (5.5)

where Fu = {f ∈ F|P (u, f) > 0}, Fv = {f ∈ F|P (v, f) > 0} and u, v ∈ U .

The most similar neighbors of user u are those with the highest value. In the Table

5.9, it would be for U1 the user U2 then U3.

U1 U2 U3
U1 - 1.0 0.823

U2 1.0 - -

U3 0.823 - -

Table 5.9: Matrix UU, user-user similarity matrix
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5.5 k nearest neighbors

Now we have the similarity user-user matrix, the last step will be to find the most

recommended products. First, we have to keep only the k, k ∈ N∗ nearest groups of

neighbors. We keep groups because in the case that k = 1 and U1 = U2, U1 and U2 have

the same importance and we do not want to take only one of them. Those steps are

decomposed in 6 stages. For the example we take k = 2 and look for a recommendation

for U2.

1. We get the nearest groups of neighbors of U2 : {U1};

2. We get the events in the neighborhood that U2 has not rated : {E4, E5};

3. For each event, we get theirs features : E4 : {F2,F4}, E5 : {F4};

4. We compute their frequency in the neighborhood : fr(F4) = 2, fr(F2) = 1;

5. For each item, we add its features frequency finding its weight in the neighborhood

: w(E4) = 3, w(E5) = 2;

6. Finally we keep the k2, k2 ∈ N∗ events with the highest score of step 5 which will

be the recommended events. In our case k2 = 1, we keep only E4.



Chapter 6

Conception

In this section, the whole conception and corresponding technical details are described.

First, we talk about the database and the DBMS used (database management system)

and then about the architecture of the program. We continue with the class diagram

and finally, we evoke the performances.

6.1 Database

The DBMS used in this project is MongoDB. It is a NoSQL database and has very

good performances with big data. In our case, there is a high likelihood to have a lot of

information for a recommendation system. NoSQL databases are more adapted for this

kind of project than SQL, specially for performances and scalability.

The Figure 6.1 shows the relational model used. If we start off by the user, we can see he

can have some associated features which come from Facebook and he has the possibility

to rate an event. An event has a category and several features with a weight. Some

entities have a field external id which corresponds to the id of Facebook for the user

or the id used in the website http://www.gokera.ch. The user also has a token from

Facebook, given to the Graph API when we send queries.
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Figure 6.1: Relational model of the database

6.2 Architecture

The project is written in Python 2.7 and uses the web framework Django 1.3. The final

purpose of this project is to be used in a web environment so it is necessary to realize

it in a website. The kind of the database used is NoSQL and the DBMS is MongoDB

(more details in chapter 6.1).

Django is based on applications we insert into it. We have developed those which

are :

1. Main, which displays the login page and the action page;

2. Event, which allows to add an event, show and rate it;

3. Events analysis, which contains all the part related to the event analysis : website

parser, tf-idf, Treetagger. This part is multi-threaded;

4. FBGraph, which provides the Facebook login and the token management. More-

over it extracts the Facebook features for a user. A part is multi-threaded;

5. Recommendation, which is our recommendation system which takes into account

the event analysis, Facebook features extraction.

All those applications always have the same structure : the views, models, functions and

classes. Only the views are present in all the applications. The Figure 6.2 shows the

architecture.

At the root of the project, there is the App config that contains all the specifics param-

eters, for example the depth of the website analysis, the weight of the features from the

description etc. There are also the unit tests for the tf-idf and urls-extractor. Settings,

Manage, Tests are files of Django.
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Figure 6.2: Architecture of the project

The event analysis is the biggest application. It contains the TreeTagger used for the

text analysis. It is a tool that works for several languages which contains the French.

This tools is very slow but it works with French. If the language was English, we would

have used the library NLTK which is faster1. Another tool we use is for the natural

language of a text. It is called Guess Language 2 and it can detect 60 languages. It

uses heuristics based on the character set and trigrams in a sample text to detect the

language. Longer the text is, more accurate is the detection. HTML parser by tag allows

us to extract what we want in a website content by specifying tags. With this, we use

also Website link arborescence which extracts all the ”unique” urls that points at the

same domain. Finally, we have a job queue we use for the multi-threaded part because

the insertion of features inside the database is not thread-safe.

The Facebook Graph application uses some libraries which allow us to realize the lo-

gin and the queries. For this, we use the libraries PyFB3 and FacePY 4.

The Recommendation application uses the famous scientific computing library NumPy5,

the matrix classes and some mathematical operations. Those operations are also used

in the event analysis. There is also a unit test in the file Test.

1More information on http://www.nltk.org.
2Available on https://pypi.python.org/pypi/guess-language.
3Available on https://github.com/jmg/pyfb.
4Available on https://github.com/jgorset/facepy.
5Available on http://www.numpy.org/.

http://www.nltk.org
https://pypi.python.org/pypi/guess-language
https://github.com/jmg/pyfb
https://github.com/jgorset/facepy
http://www.numpy.org/
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6.3 Class diagram

The project is decomposed only in 4 packages, because the main application doesn’t

have any logic.

In Figure 6.4 shows the class diagram for the package FBGraph and Events. In the

Events package there are only models from the database. Those classes are used every-

where. For the package FBGraph we have create the last model, User, and have defined

a class for the posts, pages and groups from Facebook. There is also a Graph class that

refers to the FBGraph API. The last class, FBUser allows us to represent a user with

all his pages, groups and messages and we can compute its activity for the Facebook

analysis (more details in chapter 4).

The event analysis conception is showed in Figure 6.5. It is decomposed in three parts

: text analysis, website parsing and job queue. For the last one, it is just to allow to

multi-thread the event analysis because the feature insertion into the database is not

thread-safe. The website parsing has a class (HTMLParserLink) to get the ”unique”

links (more details in chapter 3.2.3) and uses the class TreeNode to represent a node in

the url graph. HTMLParserByTag is another website parser that extracts the content

of specific tags. The rest is dedicated to the text analysis and its comprehension is quite

trivial.

The last package, the recommendation one, represented in Figure 6.3, has simply a

class which uses personal classes Matrix1D and Matrix2D and which performs all the

recommendation computations, described in chapter 5. Those classes have columns and

rows represented by a list of object (User, Event, Feature) and they allow us to access

to their value in a simplified way.

Figure 6.3: Class diagram of the package Recommendation
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Figure 6.4: Class diagram of the package FBGraph and Events

Figure 6.5: Class diagram of the package EventsAnalysis
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6.4 Performance

In a general way, the application is very slow. Using a web framework is not the fastest

way to display pages but this is not a big deal comparing to the next other performances.

The event analysis is decomposed in four main steps : to fulfill the corpus with descrip-

tion and website content, to compute the (tf-idf) of each term for each document, to find

the k most important features and finally to insert them into the database. Step four is

quite fast because it is simple database insertions and it is not possible to multi-thread

it. Steps two and three are slow because there are a lot of data and we need to calculate

several things for each term in a document. This part is multi-threaded and it is helpful.

The first step is a very long process. First, parsing a website with Python is quite

slow and we look for all unique urls which point at the same domain for every website.

As there are thousands of queries, this part is very slow. Moreover, we have to analyze

the text of the description and the website content. As we treat French texts, we use

TreeTagger and it is a very slow tool. To just analyze a simple sentence of several words

it needs approximately one second. For longer sentences, this time is longer and if you

parse the content of a website even much longer.

This part is also multi-thread but there could be several ways to do it : to split the

events in n part where n = ]Threads, or for each website analysis, start n threads to

parse all the urls but you have to take into account the commutation of context. For the

first, if unfortunately you have one thread which has all the websites with the longest

contents, the others will wait on it and so will waste time. Actually we use the first

way but it could be imaginable to use thread pool and try the second way which should

maybe be faster.

The machine we used was a Windows 8.0 with a processor E8400 which has two cores

at 3.0 Ghz, 4 GB of RAM. If we use only one core, the event analysis will take approxi-

mately thirty hours and using the both cores, approximately twenty-five hours. We can

imagine that maybe with a computer having sixteen cores, we could improve the time

to ten hours.

The Facebook analysis is also very slow for the same reasons as the event analysis.

It uses TreeTagger to extract feature from the groups and pages. The number of texts

to analyze is quite large because if we have two hundred friends, and each of them likes

three hundred groups and pages, TreeTagger will have a lot of work. Of course, this

part is multi-threaded but there is still one problem with the activity computation : for

each user we have to quantify the number of messages posted per month and for this,

we use one query. Facebook Graph API fixes a limitation at six hundreds calls per ten

minutes and this is a problem. To avoid this inconvenient, between each query we wait

one second but there is a clever way to experiment : we can use multi-queries as we

use for fetching information and we can send maximum sixty queries inside one and it

is considered like one. So with this technique we can realize thirty-six thousand queries
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in ten minutes but it needs a more complex management because we have to fulfill the

multi-queries every time.

We test this part with the first way and we have approximately thirteen hours and

thirty minutes for one core and for both cores eight hours. But it was only for one user.

Now let’s imagine we have to analyze the Facebook for each user who connects to the

website for the first time, it will not be possible with this way.

For the recommendation, the execute time is around five minutes if we use only one

core. The reason is that we have approximately 65′000 links between events and fea-

tures. When we iterate over all those objects, for each of them we have to query the

database to know the associated weight. The rest is quite fast because it is simply mul-

tiplications with values of big matrices. Instinctively, we can think that multi-thread it

would be faster, but for some reasons we don’t know, the execution time is multiply by

a factor of two or four depending the number of threads. We didn’t get time to find

the reason of this behavior but we made a hypothesis : Django queries work with lazy

initialization and make a request each time we want to access to an object, so it could

be possible that accessing to the database is mono-thread.



Chapter 7

Problems encountered

At the beginning of the project, we have defined that the website and the entire project

will be realized in C++, especially for performance and ability reasons. The web frame-

work used was Wt1 based on the famous library Boost2. Wt is based on a set of

components that could be easily integrated into a web page, as well as on a signals

systems.

The encountered problem was the connexion to Facebook, based on an OAuth system.

Some exchanges must be established via requests using GET in HTTPS. Unfortunately,

during the project, it was impossible to get responses in HTTPS whose their body wasn’t

empty and their status different than -1. Several tentatives were carried out during the

compilation of Wt in order to find a solution :

• To use different versions of Boost : 1.53 and 1.54, in 32 and 64 bits;

• To recover the last source codes of Wt on the official github3;

• To combine different optional libraries of Wt with OpenSSL;

• To compile with different versions of the Microsoft compiler, especially version

2010, 2012 and 2013.

Unfortunately none of those solutions didn’t allow us to solve the problem. After one

week of hard work, the language C++ and the library Wt were dropped out and it is

the language python as well as the web framework Django4 which was chosen.

After our last decision, I could discuss with the developer of Wt, Koen Deforche, who

explained to me that the problem came probably from OpenSSL, especially the folder

that contains the certificates as its location is not standardized and it is the operating

system which decides where to place it.

1For more information, you can consult the following website http://www.webtoolkit.eu/wt.
2Set of C++ libraries intend to cover large domains. More information on http://www.boost.org.
3Available on http://wwww.github.com/kdeforche/wt.
4More information on https://www.djangoproject.com.
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When we enter the command in a shell

”openssl version -d”

the output shows the location of the folder

”/usr/local/ssl”

which doesn’t exist in Windows. A solution would be to compile OpenSSL and change

the parameter openssldir. Unfortunately, this solution hasn’t been tested because we

didn’t have enough time.



Chapter 8

Planning

In this part, we describe the initial planing we have establish at the beginning of the

project and the final one. Then we describe the differences between those and make

findings to take into account for future projects.

8.1 Initial planning

The Figure 8.1 shows the initial planning at the beginning of the project. We have de-

composed the project in five iterations : the analysis, features and database, Facebook,

social recommendation system and documentation.

The analysis is one of the longest iteration because we have to conceptualize the project,

what we need and what we can do, still in C++. Then there is the second iteration

that contains the whole events analysis with the storage. In the middle of the project,

there is the Facebook part that is not supposed to be long to realize it and then, the

recommendation part that is supposed to be the longest one. Finally, there is a last

iteration for the documentation.

8.2 Final planning and findings

The Figure 8.2 shows the final planning. The first iteration was nearly the same, except

that there was more time for the report. But at the end of this iteration, we had a prob-

lem and we changed the language we used. All the encountered problems are described

in the chapter 7. So we have lost some time to realize the website in Python but we

have respected the end of the iteration.

The second iteration has lasted longer than we thought because we didn’t estimate

correctly the duration of the tests and during this period, we had access to a server with

sixteen cores only during a short time. It was very important to test the system in order

to run the events analysis on it to have some data to test the recommendation system.

Unfortunately we still had some problems but we couldn’t focus only on it and so have

30
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Figure 8.1: Initial planning

started the third iteration which was as we thought.

The social recommendation system iteration was shorter than expected because it was

simpler than we thought. We have profited of this time to run our scripts on a computer

to have some data to test the entire system. The last of those scripts are quite long,

more details in chapter 6.4.

The last iteration regarding the documentation was shorter because the report had

been written during all the project, in order to gain time at the end of the project to

have time in the case where we had some major issues.

Finally, the sequences diagram has not been realized because we didn’t think that was

useful.
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Figure 8.2: Final planning
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Discussions

This section contains the different results we have obtained and we discuss about them.

We give also some leads to improve those whether it be about their accuracy or about the

time to compute it. We start with the event analysis, then continue with the Facebook

analysis and finish with our social recommendation system.

9.1 Event analysis

The most important thing when we analyze events, is to have a maximum of informa-

tion about each of them. In our case, we interested in category, description and website.

Among the 3140 events, we got already 25, 41% of them with an empty description and

no website. This means that none of them will be recommended. 66, 91% of the events

have a description detected in French and 51, 97% have a website with French content.

Finally 27, 68% of the events have a description and a website with French content. If we

remove the empty events and adapt the statistics, we have respectively : 89, 7%, 76, 35%

and 37, 11%. Moreover, we have an average of 367, 68 key words per event. Those last

results are quite satisfactory but higher will be these statistics, more accurate will be

the event analysis.

In a general way, analyzing French texts with TreeTagger is very slow, approximately

one second for a short sentence. This is very problematic because we use it for the

description and website analysis and their content could be very long, especially for the

website. Unfortunately, Python has only a library for English texts analysis. So, it could

be worthwhile to find another way to analyze French text. As the event analysis is not

an operation realized each day, we can imagine use it for this part on a machine with

a high number of cores. If we really want to be efficient, rather running each time the

entire event analysis, it could be interesting to implement a system of re-indexing when

we add a new event.

Currently, the parts of the sentence in which we interest in are the nouns and the

proper names. But sometimes, we can miss some important words which could be an

adjective or another kind of word, or we can have some noise when we detect a proper

33
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name. To improve the quality of the features extraction, it could be interesting to ana-

lyze deeply the semantic of a sentence but maybe it would take so much time. Another

extra way would be to use an additional system with synonyms and group the features

which mean the same thing. At this moment, the noise of the feature extraction is quite

high and it is really necessary to find a better way.

For the websites, to detect the uniqueness of a page for our hash table, we use the

url as a key and we can have different urls for the same page. So we have only a little

redundancy because those pages, accessible by different links, are not very common.

An alternative would be to use the hash of the page content as key but it could be more

accurate and maybe we can gain some time because we avoid some text analysis. But

the content of a page could be different depending on some dynamic elements inside,

like the time, some advertisements, etc. Moreover, we have to fetch the entire content

of each page and so, loose some time. However we could mix those two approaches and

have only the problem of some dynamic contents but those are quite rare. For the time,

it depends on the language but in Python, to request a web page is quite slow.

During the description analysis, if we have more than k key words we do not parse

the website. We use this technique to highlight the description but we have a side effect

if we have exactly k − 1 key words and add a large content from the website. To avoid

this, we could define a function which defines the number of key words to take in the

website according to the number of key words in the description.

9.2 Facebook analysis

In a general way, we have an acceptable correlation between the features extracted from

Facebook and those from the event analysis. In fact, 29, 08% of all the features have been

found in a Facebook profile. Among these, we have to take into account the features we

have extracted which are insignificant. We have the exact same problem that the event

analysis in term of noise for the features and speed so the solutions would be the same.

The execution time for this part is very important because this analysis is supposed to

be realized in a few seconds.

Our area of information research in Facebook is focused on the pages and groups liked

by the user. It could be interesting to extend it by the Facebook events in which the

user has participated or his activities, books, messages for example.

In any case, whether the user is active or not, we collect data on his friends and define

a weight for the feature depending their activity in relation to the k most active friends.

The best way would be to represent the events of Gokera on Facebook and see which of

them his friends have participated and use a system similar to a recommendation based

on collaborative filtering to define the weight. Another way which will decrease the

execution time is rather to compute the activity of all his friends, we take only friends

who have already participated at an event.
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9.3 Social recommendation system

Our social recommendation system is slowed down only by the creation of the matrix

event-feature because in our case we have 65′000 links to query each time we want to

compute the recommendation and because of this, it cannot be computed in few seconds.

The solution would be to store and initialize the basic matrices in the program when we

start the server and update them several times per day. This will allow to recommend

events for a user in seconds.
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Conclusion

Through this project, we have created an entire recommendation system focused on a

single user, exploitable directly in a website. We have realized each part of it, especially

the event analysis, the analysis of the Facebook profile of a the current user and a hy-

brid recommendation based on the feature-weighted approach mixing the collaborative

filtering and the content-based.

The events we use (3140), from the website Gokera, have enough information to work

with and if we take into consideration the description and/or the website of each event,

we reach an average of 367, 86 key words per event. In term of performances, the event

analysis is too slow mainly because we analyze French content with an external tool

which is slow. Moreover parsing a website is not fast neither. For the efficiency, we can

say that we have the most important key words but we have also a lot of noise due to

simple features extraction.

With the Facebook profile of the user we have tested, we found 29, 08% of correlated

features and we have to take into account the features which are insignificant (due to

the noise). But even if the user is inactive, we have found a way to find features from

his friends data. Actually, we can not say if this system is relevant because we could

not try it with some other users, mainly due to the execution time, for the same reason

than the event analysis.

Finally, our recommendation system we have realized, seems to fill the problem in the-

ory, if a user is new or does not have a history of ratings. In practice, we cannot say if

the final system is relevant because we do not have a set of data in which we can remove

values and try to find them. For this, we will participate at the ESWC-14 Challenge:

Linked Open Data-enabled Recommender Systems1 where we would be able to make

some conclusions about the pertinence of our system. In term of performance, it would

be capable to compute the recommended events in several seconds.

1More information on http://2014.eswc-conferences.org/important-dates/call-RecSys.
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